
1

'HVLJQ�,VVXHV�IRU�D�9LVXDO

3URJUDPPLQJ�/DQJXDJH�DQG

,WV�3URJUDPPLQJ�(QYLURQPHQW

(WVX\D�6KLED\DPD

0DVDVKL�7R\RGD

%XQWDURX�6KL]XNL

6KLQ�7DNDKDVKL

7RN\R�,QVWLWXWH�RI�7HFKQRORJ\

2

2YHUYLHZ�RI�WKH�WDON
] Why Being Visual?
] A Visual Programming Language (VPL)

based on Object Data-flow Diagrams
] Language Design Issues

\ Visual Patterns, Visual Architectures, and
Visual Components

\ Pattern-Oriented Programming

] User Interface Design Issues
\ Zooming Interfaces

] Discussions

3

:K\�%HLQJ�9LVXDO"

] Diagrammatic representations are natural
for describing OO designs, programs, and
computations
\ e.g., OOA/OOD
\ e.g., Visual Programming Environments

] An object data-flow diagram is concrete
and direct

RbcQcaPba ..|..|..

4

:KDW�HOVH"

] Diagrams are not always comprehensible
\ e.g., flow-charts
\ Modular structures are necessary

] We need visual language abstractions
\ i.e., concrete abstractions
\ objects, patterns, components, architectures

] We need user interface supports
\ Interactive and scalable interfaces for editing

and navigation

5

2XU�:RUN

] An Object-Based Parallel Visual
Programming Language KLIEG

] A uniform pictorial notation for designs,
programs and computations

] Visual abstractions for objects, streams,
patterns, components, and software
architectures
\ direct manipulation and zooming interface
\ layout information and design information

6

5HXVDEOH�22�V\VWHPV

] An OO system is a collection of objects
] It can be flexible if some of the objects are

designed to be replaceable and extensible
] It can be reusable if it is flexible and

information for reuse is available

7

'HVLJQ�3DWWHUQV�IRU�22�6\VWHPV

] Design patterns
are documents
including:
\ coding techniques

for replaceable and
extensible objects

\ design information
for reuse

•Class, Object
 diagrams
•Descriptions
•example code

Implementation with
patterns

Reuse by
replacement

8

2EVHUYDWLRQV

] A replaceable object is an important notion
\ A visual environment could provide interactive

supports instead of hacking techniques

] Design information is more important
\ It is a challenge to provide a visual support for

design information
\ Pieces of design information are often lost

during coding processes
\ Design patterns are merely documents

9

2XU�$SSURDFK�

9LVXDO�'HVLJQ�3DWWHUQV��9'3�

] A program is an object data-flow diagram
] An interactive support for replaceable

objects
] VDPs as visual programming constructs

with design information
\ Simple visual interfaces for definition,

(re)use, and customization of VDPs

10

5HSODFHDEOH�2EMHFWV�LQ�9'3
] A VDP is an object data-flow diagram with

abstract objects (holes)
] Visual interfaces for:

\ instantiation of a hole with a concrete object
\ replacement of an object with another object

WorkerWorker

MasterMaster

DispatcherDispatcher

Master-Worker pattern

Dispatcher

Worker Worker Worker

Master

11

6LJQLILFDQW�'HVLJQ�,QIRUPDWLRQ

IRU�9'3�6\VWHPV

] Aspects of VDP
\ replaceable portions for particular behaviors
\ Which holes or objects shall be replaced?

] Available alternative implementations of
each hole
\ Which object it shall be replaced with?

] Dynamic behaviors of VDP
\ How it works?

12

./,(*�9'3�6\VWHP

] The system provides user interfaces for
design information
\ Multiple views of VDP by a multi-focus

fisheye zooming interface
\ Addition, deletion, and selection interfaces for

multiple alternative implementations
\ KLIEG tracer will automatically animates

behaviors of sample codes

13

./,(*�/DQJXDJH

] A program is a collection of diagrams
consisting of objects and streams

objects input port output port

streams

14

5HSODFHDEOH�2EMHFWV

] Supports for
editing diagrams
with holes

] Instantiation &
replacement by
drag&dropping

] Almost automatic
port connections
by type checking
& heuristics

Master-Worker pattern in KLIEG-VDP

15

0XOWLSOH�9LHZV�RI�./,(*�9'3
] The creator can register multiple views of a

VDP using multi-focus fisheye view
] A user can select a view

16

0XOWLSOH�,PSOHPHQWDWLRQV
] A hole may hold multiple objects
] A user can select an object with a dialog box

Drag&Drop

Types of
implementations

•Default
•Alternatives
•Sample

17

./,(*�7UDFHU
] Visualizes and animates transitions of diagrams
] Maintains VDP

layouts
] Shows contents

of streams
] Supports

multiple views
for accessing
design info.

KLIEG execution tracer

18

+LHUDUFKLFDO�3DWWHUQV
] A hole of a pattern may be replaced with

another pattern

19

+LHUDUFKLFDO�3DWWHUQV

20

3DWWHUQ�2ULHQWHG�9LVXDO

3URJUDPPLQJ

] Define the software
architecture by
hierarchically
composing patterns

] Later, replace holes
with concrete objects

] Software will evolve by
replacing components
(objects or patterns)

Software
Architecture

Components

21

6FDOLQJ�XS�9LVXDO�3URJUDPPLQJ

] The Problem
\ A program can be large and the screen size is

relatively small

\ A computation or even a snapshot of it can be
much larger

] Our solution
\ Introduction of multi-focus fisheye zooming

interface

22

./,(*�(GLWRU

] Every visual is magnified/shrunken

] Multiple portions can simultaneously be
magnified for editing

] Multiple views (multiple editing contexts)
can be registered
\ Transitions among views are visualized as

smooth animations

\ Each aspect of a program may have its own
view

23

24

./,(*�7UDFHU

] Animating program execution with automatic
diagram layout
\ Layouts and views defined by the KLIEG editor

can be used

] A multi-focus fisheye zooming interface for
browsing computations

25

./,(*�7UDFHU��FRQW��

26

./,(*�7UDFHU��FRQW��

27

&RQFOXVLRQ

] A single visual notation from
design/analysis to debugging

] Supports for software evolution
\ A program includes design and layout

information that are shared by both editor and
tracer

\ Supports for inter-object abstractions

\ Pattern-oriented software constructions

] Scaling-up VPL
\ Zooming interfaces with editing and navigation

