Design Issues for a Visual

Programming Language and
Its Programming Environment

SNWERLILEVEIYE

Masashi Toyoda

Buntarou Shizuki

Shin Takahashi

Tokyo Institute of Technology

Overview of the talk
I Why Being Visual?

i A Visual Programming Language (VPL)
based on Object Data-flow Diagrams

i Language Design Issues

I Visual Patterns, Visual Architectures, and
Visual Components

I Pattern-Oriented Programming

l User Interface Design Issues
I Zooming Interfaces

B Discussions

Why Being Visual?

§ Diagrammatic representations are natural
for describing OO designs, programs, and
computations

I e.g.,, OOA/OOD

I e.g., Visual Programming Environments

§ An object data-flow diagram Is concrete
and direct

ab.PlacQ]|ch.R /

3

What else?

Diagrams are not always comprehensible
I e.g., flow-charts
I Modular structures are necessary

I We need visual language abstractions
I i.e., concrete abstractions

I objects, patterns, components, architectures

I We need user interface supports

I Interactive and scalable interfaces for editing
and navigation

Our Work

An Object-Based Parallel Visual
Programming Language KLIEG

§ A uniform pictorial notation for designs,

programs and computations

Visual abstractions for objects, streams,
patterns, components, and software
architectures

I direct manipulation and zooming interface
I layout information and design information

Reusable 00 systems

B An OO system is a collection of objects

It can be flexible if some of the objects are
designed to be replaceable and extensible

B It can be reusable If it Is flexible and
Information for reuse Is available

Design Patterns for OO Systems

Class, Object _
diagrams § Design patterns

*Descriptions are documents
sexample code including:

I coding techniques
Implementation with for repl_aceabl_e and
patterns extensible objects

I design information

Reuse by for reuse
replacement

Observations

i A replaceable object is an important notion

I A visual environment could provide interactive
supports instead of hacking techniques

i Design information is more important

I It is a challenge to provide a visual support for
design information

I Pieces of design information are often lost
during coding processes

I Design patterns are merely documents

Our Approach:
Visual Design Patterns (VDP)

§ A programis an o

§ An interactive sup
objects

nject data-flow diagram

port for replaceable

§ VDPs as visual programming constructs
with design information

I Simple visual interfaces for definition,
(re)use, and customization of VDPs

Replaceable Objects in VDP
i A VDP is an object data-flow diagram with

abstract objects (holes)
Visual interfaces for:

I instantiation of a hole with a concrete object
I replacement of an object with another object

Dispatcher Dispatcher)<

Master-Worker pattern

Significant Design Information
for VDP Systems

§ Aspects of VDP

I replaceable portions for particular behaviors
I Which holes or objects shall be replaced?

i Available alternative implementations of
each hole

I Which object it shall be replaced with?

Dynamic behaviors of VDP
I How it works?

KLIEG-VDP System

The system provides user interfaces for
design information

I Multiple views of VDP by a multi-focus
fisheye zooming interface

I Addition, deletion, and selection interfaces for
multiple alternative implementations

I KLIEG tracer will automatically animates
behaviors of sample codes

(AR SR ELLTELTS

§ A program is a collection of diagrams
consisting of objects and streams

objects input port output port

streams

Replaceable Objects

master worker

i SUppOrtS for anueens_master
PI’DDSH | Ans DJ

editing diagrams
with holes

§ Instantiation &

replacement by
drag&dropping

§ Almost automatic
port connections
by type checking
& heuristics

Master-Worker pattern in KLIEG-VDP

Multiple Views of KLIEG-VDP

The creator can register multiple views of a

VDP using multi-focus fisheye view
I A user can select a view

| Behaviors
Modifiable behaviors of

master_worker

he problem to solve /
The load balancing policy

L -

0E. Cancel

Multiple Implementations
§ A hole may hold multiple objects

A user can select an object with a dialog box

load balancing
master worker |5patcher

Types of

Implementations \&%

adaptw dlspatcher

*Default

" | Implementations b
*Alternatives | dispatcher
° S am p I e dispatcher

dynamic_dispatcher
adaptive_dispatcher

KLIEG Tracer

I Visualizes and animates transitions of diagrams

§ Maintains VDP
layouts

Shows contents
of streams

i Supports
multiple views
for accessing
design info.

Continue

KLIEG execution tracer

Hierarchical Patterns
I A hole of a pattern may be replaced with

another pattern

master
generator combiner

workers

ispatche
15 = [y

Hierarchical Patterns

master_worker
master
generator combiner

Pattern-Oriented Visual
Programming

| Software
I Define the software Architecture

architecture by
hierarchically
composing patterns

I Later, replace holes
with concrete objects

i Software will evolve by
replacing components

(objects or patterns)
Components

Scaling-up Visual Programming

| The Problem

I A program can be large and the screen size Is
relatively small

I A computation or even a snapshot of it can be
much larger

B Our solution

I Introduction of multi-focus fisheye zooming
Interface

KLIEG Editor

i Every visual is magnified/shrunken

§ Multiple portions can simultaneously be
magnified for editing

i Multiple views (multiple editing contexts)
can be registered

I Transitions among views are visualized as
smooth animations

I Each aspect of a program may have its own
view

master_worker nqueens

process

—J

process

master_worker

master

generator combiner

nqueens

NQUEENs_yen

queens_workel

\ J main —J

filter filter filter

IqUeEns_Gen

Size Oepth

Probs ::|

Ans

nauEEns_master

el

|Pr0bs D \

NAMEEN! nqueen:

.

check check check check check check

_

_

ueenWod

_

waitall

_

[1

load balancing

dispatchers

master_wodier

master

KLIEG Tracer

i Animating program execution with automatic
diagram layout

I Layouts and views defined by the KLIEG editor
can be used

§ A multi-focus fisheye zooming interface for
browsing computations

KLIEG Tracer (cont.

Files Options

main
process
master worker
master

pass_answers
Outz} |
ans b

dispatcher

|th3 k Comb} .
Wksh| [Ansk
5,

wrﬂ
nqueens_worker
Probs b

ngueens_worker

Probs }

Ans} | Ans} |

main
process
master worker
master

. |

/

ngueens wuﬂf.er
ngueenWorker
|
nqueens_worker
u Probs § r
Ans} |
i]
N
N /

Conclusion

i A single visual notation from
design/analysis to debugging

i Supports for software evolution
I A program includes design and layout

Information that are shared by both editor and
tracer

I Supports for inter-object abstractions
I Pattern-oriented software constructions
i Scaling-up VPL
I Zooming interfaces with editing and navigation

27

