Challenges in Software Engineering in Japan

Nationwide Software Disaster
Embedded Software Crisis
Challenges and Our Strategies

Mikio Aoyama Nanzan University, Japan mikio.aoyama@nifty.com http://www.nise.org ICSE 2004, May 26, 2004, Edinburgh

NISE: Network, Information, and Software Engineering Laboratory

NANZAN

UNIVERSITY

Nationwide Software Disaster Banking System

April 1, 2002: The Banking System of the Largest Bank, Mizuho FG (Financial Group), Went in Services but Malfunctioned for 1 Month

- Mizuho FG is the Merger of 3 Major Banks in Japan
- The 3 Year Project of Bridging 3 Major Banking Systems of Different Computers/OS/Applications Failed
 - Internal Political War Made the Project Turmoil

Without Completing Testing, The System Went into Services

Isaster in Daily Life: Thousands of ATM Were either Out-of Order or Malfunctions

Double Withdraw from 60,000 Accounts

Delay of 2.5 Millions Transactions

People and Government Realized the Development and *Operational* Risk of Software

Nationwide Software Disaster Transportation System

March 1, 2003: A Bug of FDP (Flight Data Processing system) Made Tokyo ATC (Air Traffic Control center) Almost Shuttered for Whole Day

 A Revision of FDP Exposed a Hidden, Known and Unfixed Bug
203 Flights Cancelled & 1,500 Flights Delayed upto 6.5 Hours
Affected 270,000 People, 1,000 People Forced to Stay in Night at Tokyo Airport

April 8, 2004: A Bug of RDP (Radar Data Processing system) Triggered FDP System in Tokyo ATC Down for More than 2 Hours 130 Flights Delayed More than 30 Min.

Software is Social Infrastructure Software is Vulnerable, So the Society is

Airplanes Grounded on March 1, 2003

Nationwide Software Disaster Mobile Phones

Feb. 2001: A Bug of Embedded Software Forced 230,000 Recall of Mobile Phones, Damaged \$Mill Loss

- Increasing the Size and Complexity of Embedded Software
- Other Companies Repeated Recalls or Stop Selling
- People so Depending at their Personal Life

Camera, Game, Digital TV & Radio Receiver

Pe-ID and Digital Wallet: (Like IC Card) Check-In/Out JR Train and Domestic Flights, e-Cashing

Risk of Embedded Software is Huge to both Customer and Vendor Embedded Software May Cause Recall of Systems 3rd Wave of Software Crisis? (after Mainframe & PC)

Embedded Software Crisis From PC to Ubiquitous/Embedded Network

- Another Turning Point: 3rd Wave of IT Evolution
 - From PC(0.1B Unit/Year) to Embedded Controllers (10B Unit/Year)
 - Ubiquitously Connected: Dense Interaction and Autonomic
- Huge Opportunities and Risks

All Rights Reserved, Copyright Mikio Aoyama, 2004

Source: Y. Hanai and M. Aoyama, Challenge of Keitai Software: Software Engineering for Next Generation of Mobile Phone Systems, Proc. ICSE 2001 Ritorento P.C683 ght Mikio Aoyama, 2004

Embedded Software Crisis Shorter Development Time is Norm

60% of Projects: 3-6 Months for Development Time-to-Market is Competitive Edge

1-2Months 3-6Months 7-12Months 1Year or More Survey by Mitsubishi Research Institute for IPA (Information technology Promotion Agency) Sample: 258 Major Software Houses in Japan and Member of JISA (Japan Information technology Service industry Association)

Embedded Software Crisis Safety and Reliability Become Job #1

From Good-Enough Quality to eXtremely High Quality

- Safety-Critical Embedded Software 10
 - Mission-Critical Software Systems: 10**(-6)
 - Safety-Critical Embedded Software
 - Commercial Airplane (Fly-By-Wire): ^{*} Flight Control Software=10**(-10)
 - Automobile (Drive-By-Wire): Drive 2 Control Software=10**(-12?) [Impact of Mass Production]
- Software is Dominant in Embedded Systems: Consumer Electronics

Development Cost Distribution of Analog/Digital TV

Source: Presentation by Y. Imai at IPA Symposium, Oct. 2003.

Embedded Software Crisis Social Responsibility

Japanese Software and Service Industry

- Revenue: ~\$140B, Employee: 560,000
- Embedded Software Industry
 - Revenue: ~\$2B(\$35B for Systems), Employee: 150,000
- Embedded Software Development
 - Jominated by Small-Medium Size Companies
 - Few People with Software Engineering Education

Industry Structure

- Hierarchical Industry Structure
 - *****Low Competitiveness

No Technical Incentive

Offshore Development

Offshore

Source: MEIT Survey

All Rights Reserved, Copyright Mikio Aoyama, 2004

Soft. Houses

Big(10~20)

Small-Medium Software Companies

of Big

Subsidiary Independent

Plan & Mgmt

Design

Implement

Challenges and Our Strategies We Must Realize and Respond

View as Structural Problem

- Not Coincidence, Not Specific Companies, (Not Country), ...
- But Whole Software Industry and Research Community
- Strategic Approach
 - Long-Term Strategic Goal
 - **No Short-Term "Naive Competitive" Funding**
 - Address Essential Issues in Software Engineering
 - Requirements, Reuse, Metrics, Visualization
 - **Scientific and Quantitative Approach**
 - Business Practice (Might be Specific to Japan)

- User/Customer Involvement
 - **Nothing Change without Customer's Demand**
- Lessons Learn from Past Failures of Government Projects

Challenges and Our Strategies SEC (Software Engineering Center)

Sponsored by MEIT: Ministry of Economics, Industry and Trade

- Planning since March 2003 (Many Proposals before That)
- To be Officially Open on Oct 1, 2004,
- Ist Year Budget: Some \$12M
- Dedicated to Software Engineering Research & Practice
 - Focus on Practice, and Collaboration between Industry and Academia

Major Area of Work

- Jomains: Enterprise and Embedded Software
- Technologies

Requirements Engineering

Architecture & Components/Services

- Solution State Agency Agenc
- Empirical Data Collection and Analysis
- Project/Quality Management
- **Software Engineering Education**

Challenges and Our Strategies Global Collaboration

Concerning and Similar Activities Arising at Different Countries

- UK: RAEng Report with Possible Plan of SEI and London Software System (Imperial College, etc)
- US: PITAC Report [1999] and NIST Report on Inadequate Testing [2002]
- Known Success Stories: SEI(USA), Fraunhofer IESE (Germany)

Need Global Collaboration

- Ex: Impact Project (Osterweil, et al.)
- Need to Convince Entire Society
 - Importance of Software Engineering

Thank You