3rd International Semantic Web Conference (ISWC2004)
Workshop on Semantic Web Services:
Preparing to Meet the World of Business Applications
November 8, 2004, Hiroshima, Japan

Challenges of Ubiquitous Semantic Web Services

Mikio Aoyama
Nanzan University
mikio.aoyama@nifty.com
http://www.nise.org/

Scenario

Vision: Software over the Web

Technology: Status of Web Services

Engineering: Web Services Engineering

Example: Value-Added Service Broker

Research Challenges

Vision: Software over the Web Two Faces of Web

- "Program = Algorithm + Data Structure"
- Semantic Web Services
 - To Bridge the Semantic Gap of Web Services

Vision: Software over the Web Two Directions of Computing

Vision: Software over the Web Evolution of Information Systems

- From Enterprise to Networked Enterprises
- From Information Stock to Information Flow

Vision: Software over the Web Collaboration Creates Synergy Effect

- Airline Computer Reservation System (CRS)
 - Collaboration is the Essential Requirements

Source: M. Aoyama, et al., Aviation and IT, Kyoritsu, 2001.

6

Vision: Software over the Web Collaboration Maximizes End-to-End Value Added

- Collaboration along with End-to-End Process
 - Cost Cutting: Optimization over the End-to-End Process
 - Value-Added: Better Customer Satisfaction: Aggregation, Agility
- Different Aspects of Two Ends: User and Business

B2C, P2P Direct Connection

Service Integration

(One Stop Service)

[Buy, Maintenance, Finance]

B2B, **B2M2B**

Business Process Collaboration

New Business Model/Market [SCM, e-Marketplace]

Vision: Software over the Web Challenges of Networked Enterprise Software

- Evolution onto Open and Decentralized Network
 - Web is Boundary-less, Center-less
 - Evolution is Dynamic, and (Locally) Autonomic
- From System to System-of-Systems
 - End-to-End within/across Different Organizations with Different Platforms and Architectures
 - **Integration Nightmare of Spaghetti Systems**
 - Interoperability/Collaboration
 - **Program Interface: OS, Languages, Middleware**
 - Semantics of Data: Ontology (Vocabulary, Relationship), Data Structure, Languages, Encoding

Vision: Software over the Web **Emerging Ubiquitous/Embedded Systems: ITS**

- "ITS Revolution": ITS, Telematic, VRM
 - Safety, Environment, Convenience, Entertainment
- ""Mobile" Collaboration of Automobile with

Ground System, Manufacturer, Service Providers

Services at Garage CRM (Maintenance),

Information (Recall)

Services at Rest Area Area Guide

(Restaurants, Parking)

Services for Driving **Driving Assistance,** Navigation, Diagnostics, **Entertainment**

ITS: Intelligent Transport System

VRM: Vehicle Relationship Management

Providers

Service

Manufacturer Center

Ground System Remote Sensors, **Monitor System**

On-Board System 50+ CPUs & 120+ **Sensors Connected** via LAN

All Rights Reserved, Copyright Mikio Aoyama, 2004

Vision: Software over the Web Software over the Web Forms an Society

- Key to E-Business/Software Society:
 Collaboration of Software Systems across
 Organizational Boundaries
- Human Society: Collaboration of People

Scenario

Vision: Software over the Web

Technology: Evolution of Web Services

Engineering: Web Services Engineering

Example: Value-Added Service Broker

Research Challenges

Technology: Evolution of Web Services (My) Vision of Web Services

Business-Service-Computing Model

- Platform Independence: Productivity, Interoperability
- Business-Model Independence: Reuse, Evolution/Agile

Technology: Evolution of Web Services From Object/Component to Web Services

Service=Encapsulation of Components Service Provision **Application** EDI, EC Service Web **ASP** Service (SCM, **Services** Service (Application Requester eMP), Service **Service Provider** EAL **Provider**) **Broker** B₂B₁ **Component-Based System** Computing Component Component **Platform Architecture Integration (Middleware) Object**

Technology: Evolution of Web Services Merging to a Single Platform of Web Services

Technology: Evolution of Web Services Business/Social Rationale

Single Common Ground

IBM, Microsoft, Sun, Oracle, ...

Technology: Evolution of Web Services Web Services Platform Reaching a Maturity

- Web Services Platform: 3 Major Technology Stacks
 - Description, Publish & Search, Binding & Execution
- Current Issues: Business Process Orchestration

Technology: Evolution of Web Services
Web Services Technology Stack

Orchestration/
Choreography
Interactions
Registry

Security

Management

Description

Inter-mediatory

Encapsulation

Reliability

Messaging

Technology: Evolution of Web Services Essentials of SOA

- SOA: Architecture for Dynamic Collaboration
 - Architecture: From Client/Server to Publish/Subscribe
 - Program/Service Discovery: From Design-Time to Run-Time based on Semantic/Contents
 - From Ownership to Usage
- Dynamic Discovery/Binding of Components/ Services
 - Component-Based: Run-Time Binding
 - **Ex: DLL (Dynamic Link Library) on Windows**
 - Service-Oriented: Dynamic Discovery and Binding of Services

Technology: Evolution of Web Services Implication of Publish/Subscribe Architecture

Publish-Find-Bind Pattern

- Decoupling: No Direct Interactions between Requester and Provider
- Discovery at Run-Time (when Buying) rather than Design-Time (Plan)

Technology: Evolution of Web Services Web Services Ecosystem

- Web Services Form an Ecosystem
 - Diverse Services Emerging on the Web
 - Amazon, Google, Microsoft Office 2003 Research Service
- Papplication = Binding Services for Business
- Unlike Physical Ecosystems, Web Services are:
 - Almost Free from Physical Constraints: Diversity, Scope
 - Dynamic Changing at Real-Time

Requester 1

Requester 2

Application

Application

Y

Application

Y

Application

Z

Application Provider A

Provider B

Application Provider C

Provider D

Provider E

Web Services Ecosystem

Technology: Evolution of Web Services Broker Architecture on SOA

- Broker/Intermediary Architecture
 - Decoupling between Requester and Provider
 - Better Binding between Requester and Provider

Scenario

Vision: Software over the Web

Technology: Status of Web Services

Engineering: Web Services Engineering

Example: Value-Added Service Broker

Research Challenges

Engineering: Web Services Engineering User-Driven and Business-Driven

Two Ends

- User-Driven: Diverse Requirements, Context-Awareness by Use Case/Scenario
- Business-Driven: Business Goals and Quality by Business Modeling (e.g. EA: Enterprise Architecture)

One User
[Profile, Behavior, etc.]
Personal Profile, Customer
Preference

Enterprise/Organization
[Business Profile, etc.]
Corporate Profile, Business
Strategy/Rule/Policy

User-Driven
(B2C, G2C)

Diverse Requirements,
Context-Awareness
Use Case/Scenario
Customer Behavior

Broker

Business-Driven
(B2B, G2B, etc.)
Business Goals
and Quality
Business Models
Choreography

Engineering: Web Services Engineering Broker is the Key Player

2 Roles of Broker

- (On Demand) Design: Find and Composition
 - Find Qualified Web Services
 - **Composition and Evaluation**
- (On Demand) Execution
 - **Execution, Control of Scope, Protocol Binding**

Engineering: Web Services Engineering Business Models on Broker Architecture

Common Broker Pattern of Multiple Business Models

Engineering: Web Services Engineering Requirements to Dynamic Brokerage

Brokerage is Essentially Dynamic and Complex

- (Dynamic) Positioning
 - **Sell**, Buy
- (Dynamic) Change of Scope
 - Scope of Call-for-Bid: Open, Close, etc.
- Negotiation
 - **Dynamic Pricing, Changing Conditions**
- (Dynamic) Change of Business Protocols
 - **One-to-One (for MRO), One-to-Many (for Auction), Many-to-Many (for Double Auction/Exchange)**
- Support of Non-Functional Properties
 - Performance, Reliability, Security and Trust

Engineering: Web Services Engineering e-Business Value Chain by Collaborating Brokers

- e-Business Value Chain on the Web
 - Dynamic Composition and Routing of Web Services
 - Value Network: Collaborate Web Services to Augment Business Value
 - **Ex. Web Services Network: "Business Dial Tone"**
- e-Business by Collaborating Brokers [Broker Network]
 - Dynamics by Changing Collaboration Patterns
 - Need Navigation Method for Value

Engineering: Web Services Engineering Drama(tic) Model for Collaborating Brokers

- Concept: Business/Trade is a Drama
- Modeling with an Extension of Use Cases
 - Introduction of Role and Scene to Use Cases to Enabling Dynamic Collaboration across Business Scenarios
 - **Brokerage** could be a Role
 - **BA Scene Defines a Business Context and a Scope**
 - Service could be a High-Level Use Case
- Mapping to Web Services Platform

Reference: M. Aoyama, A Business-Driven Web Service Creation Methodology, *Proc. WebSE 2002* (International Workshop on Web Services Engineering) in Proc. IEEE/IPSJ SAINT 2002 (2002 Symposium on Applications and the Internet), Feb. 2002, pp. 225-228.

All Rights Reserved, Copyright Mikio Aoyama, 2004

Engineering: Web Services Engineering Drama(tic) Model for Collaborating Brokers

- **Actor:** An Active Entity
- Role (Personality): Played by an Actor in a Scene
- Service: Task Performed by an Actor with a Role
- Scene: Context of Plays of Actors
- Scenario: A Sequence of Plays in a Scenario

Engineering: Web Services Engineering Drama(tic) Model for Collaborating Brokers

- Scenario 1&2: Service Aggregation
 - Composing MRO with Spot Procurement for Varying Demands
- Scenario 3: Reduction
 - SCM: Actor b plays both Buyer and Broker

Scenario

Vision: Software over the Web

Technology: Status of Web Services

Engineering: Web Services Engineering

Example: Value-Added Service Broker

Research Challenges

Value-Added Service Broker **Binding Services by Value**

- Dynamic (Context-based) Composition by Value **Spaces in Web Services Ecosystem**
 - Local "Semantic" Space to Provide a Specific Value
 - Provide Service Attributes: QoS, SL (Service Level), etc
 - Composing the Services Based on the Value

Value-Added Service Broker Prototype of Value-Added Service Broker

- Value-Added Service Composition by Brokerage
 - Service Composer: Navigation of Composition Patterns by Value
 - **Meta-model: Simple Ontology of Value**
 - Content-Based Service Routing with WS-Routing
 - **Extending SOAP Message and Rerouting by Broker**

Reference: K. Nakamura, A. Tsuge, and M. Aoyama, Value-Based Dynamic Collaboration of Web Services, IPSJ SIGSE, Mar. 2004, pp. 123-130.

All Rights Reserved, Copyright Mikio Aoyama, 2004

Value-Added Service Broker Example: Dynamic Dictionary System

- Navigated Collaboration of 3 Dictionary Systems
 - ICD Service by @IT: Dictionary Specific to IT
 - **Rich in IT Domain, but Narrow**
 - NetDicV06 Service by Sanseido (Dictionary Publisher): Qualified General Dictionary by Japanese Publisher
 - **Highly Reliable, Very Wide but Shallow**
 - SimpleWordBook: Developed by Students in our Laboratory Specific to Software Engineering
 - ****Rich in Very Narrow Domain and Possible Incorrectness**

Value-Added Service Broker Example: Dynamic Dictionary System

Increase the Value (Reliability) of Information

- Enrich the Information by Multiple Dictionary
- ICD Service and SimpleWordBook: Possible to Search Technical Terms: e.g. "Apple Computer"
- ICD Service: Provide Rich Information: Company History
- NetDicV06 Service: "Apple" and its Associated Idioms

Value-Added Service Broker Example: Calculation System

- Precision-Guaranteed Calculation System
 - Combining Different Computing Services
 - **Ex. Specific Math Package**
 - Guarantee the Precision across End-to-End Processing
 - **Ex. Data Type Conversion: Integer and Double**

Scenario

Vision: Software over the Web **Technology: Status of Web Services Engineering: Web Services Engineering Example: Value-Added Service Broker** Research Challenges

Research Challenges Platform Technology

"2nd Generation": From Web Services to SOC

- Extension of Platform Computing Architectures
 - Peer Services and Service Grid: Symmetric Web Services
 - **Mobile Services**
- Overcome Vulnerability and Cost of Decentralization
 - **Security, Safety and Trust**
 - (Long-Life) Transactions and Performance
- Migration of Legacy Applications and Components to SOC
 - **Wrapping**

Research Challenges Development Technology: WebSE

- New Frontier in Software Engineering
 - Process and Methodology
 - **New Process for Development and Delivery**
 - **SOD** (Service-On-Demand)?
 - Mapping Real-World (Business) to Web Services
 - Design and V&V of Dynamic Behavior
 - Modeling Networked Enterprises/Businesses
 - **BPM Language and Methodology**
 - **♥Visual Modeling Language: UML 2 ++?**

Research Challenges Development Technology: WebSE

- New Frontier in Software Engineering
 - **SOA**
 - **Broker Architecture**
 - Design for Non-Functional Requirements
 - **SLA** (Service Level Agreement) and SLM
 - ****AOSD (Aspect-Oriented Software Development)**
 - **Security, Safety and Truth**
 - Better Integration of Semantics: Ontology and Semantic Web
 - **(Business) Ontology, Domain Engineering**

Summary

Web = New Computing Model

- Creating a New Layer of "Computing"=Service/SOC
- Collaboration is the Key
- Web Services Technology
 - Rapid Advancement of Platform Technology
 - Business Orchestration is the Issue
- Need of Web Services Engineering
 - Engineering on SOA and Broker Architecture
- Semantic Web Services
 - Integration of SOC/SOA and Semantic Web

Diversity and Balance/Collaboration

Thank You

Questions?