
Timing Definition Language
TDL

Wolfgang Pree
chrona.com

© 2011, chrona.com 2 Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

Overview
  Timing Definition Language (TDL) in a nut shell
  TDL development process
  TDL tools

© 2011, chrona.com 3 Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

TDL in a nut shell

© 2011, chrona.com 4 Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

benefits of timed model

  synchronous languages:
  value determinism

  timed model (LET abstraction)
  time and value determinism
  well suited for distributed platforms

© 2011, chrona.com 5 Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

What is TDL?
  A high-level textual notation for defining the timing behavior of

a real-time application.

  TDL covers all aspects that are required to model safety-
critical software as found, for example, in cars, airplanes,
Unmanned Aerial Vehicles (UAVs), automation systems

  seamless integration of time-triggered (synchronous) and
event-triggered (asynchronous) activities

  TDL’s specification is public; could form the basis of an open
standard

© 2011, chrona.com 6 Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

TDL is conceptually based on Giotto

Giotto project: 2000 – 2003, University of California, Berkeley

TDL = Giotto concepts

+ Syntax

+ Component Architecture

+ Tool Chain

+ Extensions

© 2011, chrona.com 7 Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

TDL tools

  Chrona TDL-Compiler
  Chrona VisualCreator
  Chrona VisualDistributor
  Chrona VisualAnalyzer

  requires Java 1.5 or later
  optional integration with MATLAB/Simulink from

The MathWorks

  Chrona TDL-Machine (alias E-Machine)
  platform-specific, typically in C

© 2011, chrona.com 8 Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

TDL tool chain

.tdl TDL:Compiler TDL:Machine* .ecode

functionality
code

* Simulink, OSEK, dSpace, ARM, AES, INtime, RTLinux, ...

© 2011, chrona.com 9 Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

TDL tool chain

.tdl TDL:Compiler TDL:Machine* .ecode

functionality
code

* Simulink, OSEK, dSpace, ARM, AES, INtime, RTLinux, ...

platform
specific

AST

platform
specific

Platform
plugin*

© 2011, chrona.com 10 Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

Chrona VisualCreator

TDL tool chain

.tdl TDL:Compiler TDL:Machine .ecode

functionality
code

platform
specific

AST

platform
specific

Platform
plugin*

© 2011, chrona.com 11 Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

Chrona VisualDistributor

Chrona VisualCreator

TDL tool chain

.tdl TDL:Compiler TDL:Machine .ecode

functionality
code

platform
specific

AST

platform
specific

Platform
plugin*

© 2011, chrona.com 12 Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

Chrona
VisualAnalyzer

TDL tool chain

TDL:Machine
node1

TDL:Machine
node2

TDL:Machine
node3

© 2011, chrona.com 13 Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

TDL programming model: multi-rate, multi-mode systems (I)

© 2011, chrona.com 14 Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

TDL programming model: multi-rate, multi-mode systems (II)

LET-semantics

© 2011, chrona.com 15 Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

Logical Execution Time (LET) abstraction

ET <= WCET <= LET

results are internally available at ‘stop (ET)’

results are externally visible at ‘terminate’

spare time between ‘stop’ and ‘terminate’

time task invocation

Logical Execution Time (LET)

Logical

Physical

start stop
(ET)

suspend resume

release terminate

stop
(WCET)

© 2011, chrona.com 16 Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

LET advantages

  observable (logical) timing is identical on all
platforms

  allows for simulation
  allows for composition
  allows for distribution

© 2011, chrona.com 17 Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

Periodic execution in TDL modes

  Every mode has a fixed period.
  A task t has a frequency f within a mode.
  The mode period is filled with f task invocations.
  The LET of a task invocation is modePeriod / f.

time task t invocation 1
Logical

task t invocation 2

Mode Period
Mode Start Mode End

© 2011, chrona.com 18 Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

TDL module: modes, sensors and actuators form a unit

© 2011, chrona.com 19 Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

Example: Receiver imports from Sender module

module Sender
module Receiver

© 2011, chrona.com 20 Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

module Sender
module Receiver

Example: Receiver imports from Sender module

public

© 2011, chrona.com 21 Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

module Sender
module Receiver

Example: Receiver imports from Sender module

public

private

© 2011, chrona.com 22 Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

TDL syntax by example
module Sender {

 sensor boolean s1 uses getS1;
 actuator int a1 uses setA1;

 public task inc {
 output int o := 10;
 uses incImpl(o);
 }

 start mode main [period=5ms] {
 task
 [freq=1] inc(); // LET = 5ms / 1 = 5ms
 actuator
 [freq=1] a1 := inc.o; // update every 5ms
 mode
 [freq=1] if exitMain(s1) then freeze;
 }

 mode freeze [period=1000ms] {}
}

s1 inc [5ms] a1
Sender (mode main)

© 2011, chrona.com 23 Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

Module import
module Receiver {

 import Sender;
 …
 task clientTask {
 input int i1;
 …
 }
 mode main [period=10ms] {
 task [freq=1] clientTask(Sender.inc.o); // LET = 10ms / 1 = 10ms
 …
 }
}

s1 a1
Sender

clientTask [10ms] a1

Receiver
inc [5ms]

© 2011, chrona.com 24 Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

LET-behavior (independent of component deployment)

t Sender inc inc

Receiver clientTask

inc inc

10 ms

5 ms

communication of inc’s
output to clientTask

clientTask

© 2011, chrona.com 25 Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

TDL execution

© 2011, chrona.com 26 Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

TDL run-time environment

  based on a virtual machine, called TDL:Machine
  executes virtual instruction set, called E-code

(embedded code)
  E-code is executed at logical time instants
  synchronized logical time for all components
  E-code generated by TDL compiler from TDL

source
  covers one mode period
  contains one E-code block per logical time instant

© 2011, chrona.com 27 Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

one TDL:Machine per node

TDL:Machine
single
node

© 2011, chrona.com 28 Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

one TDL:Machine per node

TDL:Machine
node1

TDL:Machine
node2

TDL:Machine
node3

© 2011, chrona.com 29 Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

TDL extensions

© 2011, chrona.com 30 Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

TDL slot selection

  f = 6

time
Logical

Mode Period
Mode Start Mode End

slot 1 slot 2 slot 3 slot 4 slot 5 slot 6

© 2011, chrona.com 31 Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

  f = 6
  task invocation 1 covers slots 1 – 2
  task invocation 2 covers slots 4 – 5

time
Logical

Mode Period
Mode Start Mode End

task invoc. 1 task invoc. 2

slot 1 slot 2 slot 3 slot 4 slot 5 slot 6

TDL slot selection

© 2011, chrona.com 32 Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

TDL slot selection allows the specification of ...
  an arbitrary repetition pattern
  the LET more explicitly
  gaps
  task invocation sequences
  optional task invocations

© 2011, chrona.com 33 Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

Physical layer / E-code blocks

time
Logical

Mode Period
Mode Start Mode End

task invoc. 1 task invoc. 2

slot 1 slot 2 slot 3 slot 4 slot 5 slot 6

  E-Code block follows fixed pattern:
1.  task terminations
2. actuator updates
3. mode switches
4.  task releases

E-code
block

E-code
block

E-code
block

E-code
block

Physical

© 2011, chrona.com 34 Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

E-code compression

  E-code blocks may be identical
  compression feature would be welcome
  new instruction:

 REPEAT <targetPC>, <N>
  jumps N times to targetPC, then to PC + 1.
  uses a counter per module
  counter is reset upon mode switch

© 2011, chrona.com 35 Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

Adding asynchronous activities

time
Logical

Mode Period
Mode Start Mode End

task invoc. 1 task invoc. 2

slot 1 slot 2 slot 3 slot 4 slot 5 slot 6

Priority levels
  black: highest priority (E-code)

E-code
block

E-code
block

E-code
block

E-code
block

Physical

© 2011, chrona.com 36 Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

time
Logical

Mode Period
Mode Start Mode End

task invoc. 1 task invoc. 2

slot 1 slot 2 slot 3 slot 4 slot 5 slot 6

Priority levels
  black: highest priority (E-code)
  red: lower priority (synchronous tasks)

E-code
block

E-code
block

E-code
block

E-code
block

Physical

Adding asynchronous activities

© 2011, chrona.com 37 Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

time
Logical

Mode Period
Mode Start Mode End

task invoc. 1 task invoc. 2

slot 1 slot 2 slot 3 slot 4 slot 5 slot 6

Priority levels
  black: highest priority (E-code)
  red: lower priority (synchronous tasks)
  blue: lowest priority (asynchronous activities)

E-code
block

E-code
block

E-code
block

E-code
block

Physical

Adding asynchronous activities

© 2011, chrona.com 38 Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

Asynchronous activities rationale

  event-driven background tasks
  may be long running
  not time critical
  could be implemented at platform level, but:
  platform-specific
  unsynchronized data-flow to/from E-machine

  support added toTDL
  Goal: avoid complex synchronization constructs

and the danger of deadlocks and priority inversions

© 2011, chrona.com 39 Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

Kinds of asynchronous activities

  task invocation
  similar to synchronous task invocations except

for timing
  input ports are read just before physical

execution
  output ports are visible just after physical

execution
  data flow is synchronized with E-machine

  actuator updates
  similar to synchronous actuator updates except

for timing
  data flow is synchronized with E-machine

© 2011, chrona.com 40 Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

Trigger Events

  hardware and software interrupts
  periodic asynchronous timers
  port updates

Use a registry for later execution of the async
activities.

Parameter passing occurs at execution time.

Registry functions as a priority queue.

© 2011, chrona.com 41 Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

Threads and critical regions
hardware interrupts, timer:
highest priority

synchronous activities (E-machine):
high priority

asynchronous activities:
lowest priority

registered events
enqueue()

dequeue()

on interrupt, on timer

on port update

on port update

ports

critical region thread

© 2011, chrona.com 42 Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

Synchronization requirements

  Async activities don‘t preempt anything.
  E-machine may preempt async activities.
  Hardware interrupts (incl. timers) may preempt

everything incl. other hardware interrupts.
  We need a very robust thread safe registry.
  We need a very efficient enqueue operation
  for serving hardware interrupts quickly
  for efficient synchronous port update triggers

  dequeue is done asynchronously and may be
slower.

© 2011, chrona.com 43 Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

Transparent distribution

© 2011, chrona.com 44 Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

TDL module-to-node-assignment (example)

Sender
ECU1

ECU2
Receiver

FlexRay bus

© 2011, chrona.com 45 Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

Transparent distribution of TDL components:

  Firstly, at runtime a set of TDL components
behaves exactly the same, no matter if all
components are executed on a single node or if
they are distributed across multiple nodes.
The logical timing is always preserved, only the
physical timing, which is not observable from the
outside, may be changed.

  Secondly, for the developer of a TDL
component, it does not matter where the
component itself and any imported component
are executed.

© 2011, chrona.com 46 Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

sample physical execution times on ECU1/ECU2

t Sender inc inc

Receiver clientTask

inc inc

10 ms

5 ms

clientTask

ECU1

ECU2

© 2011, chrona.com 47 Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

Constraints for automatic schedule generation

Sender inc inc

Receiver clientTask

inc inc

10 ms

5 ms

clientTask

ECU1

ECU2

communication
window

communication
window

t

stop
(WCET)

stop
(WCET)

© 2011, chrona.com 48 Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

Bus schedule generation

Sender inc inc

Receiver clientTask

inc inc

10 ms

5 ms

clientTask

ECU1

ECU2

communication
window

communication
window

local
buffer

local
buffer

t

FlexRay
bus

© 2011, chrona.com 49 Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

Chrona’s VisualDistributor maps TDL modules to nodes

© 2011, chrona.com 50 Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

TDL-based
development process

© 2011, chrona.com 51 Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

Chrona tools in the V model

requirements

functional model

application code test

verification
+ timing

Chrona VisualCreator
in Matlab®/Simulink®

Chrona VisualDistributor generiert for
platform 2

generated for
platform 1

. . .

C

© 2011, chrona.com 52 Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

TDL tools: demo

© 2011, chrona.com 53 Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

Status quo
  ready

  TDL:VisualCreator (stand-alone or in Matlab®/Simulink®)
  TDL:VisualDistributor (extensible via plugins; currently a plugin for

FlexRay is available as product, together with plug-ins for various
cluster nodes such as the MicroAutoBox, and Renesas–AES)
The TDL:VisualDistributor is available as stand-alone tool or
in Matlab®/Simulink® and provides the following features:
  Communication Schedule Generator
  TDL:CommViewer
  automatic generation of all node-, OS- and cluster-specific files

  TDL:Compiler
  TDL:Machine for Simulink, mabx, AES, ARM, INtime, OSEK
  seamless integration of asynchronous events with TDL
  multiple slot selection (decoupling of LET and period; eg, for event

modeling)
  harnessing existing FlexRay communication schedules (via FIBEX) for

their incremental extension
  TDL:VisualAnalyzer (recording and debugging tool)

  work in progress
  ‘intelligent’ FlexRay parameter configuration editor
  TDL:Machine for further platforms (ARM, etc.)

© 2011, chrona.com 54 Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

TDL advantages

© 2011, chrona.com 55 Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

The TDL way:

develop once

3 dSpace
mabx

TT
Ethernet

deploy on any
platform

Component C

. . . ARM

FlexRay-based
communication

(TT)
CAN ...

single
node

© 2011, chrona.com 56 Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

State-of-the-art:

3 dSpace
mabx

C-a
2 DeComSys

Renesas

C-b

. . .

C-c

. . .

© 2011, chrona.com 57 Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

TDL advantages

  transparent distribution: developers do not have
to consider the target platform (processor, OS,
communication bus, etc.), which could be a single
node or a distributed system

  time and value determinism: same inputs imply
corresponding same outputs
  significantly improved reliability
  simulation = behavior on execution platform

© 2011, chrona.com 58 Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

developers have to deal with 3 dimensions

functionality

© 2011, chrona.com 59 Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

developers have to deal with 3 dimensions

functionality

timing

© 2011, chrona.com 60 Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

developers have to deal with 3 dimensions

functionality

timing

platform

© 2011, chrona.com 61 Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

TDL reduces this to 2 dimensions

functionality

timing

platform

© 2011, chrona.com 62 Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

TDL reduces this to 2 dimensions

functionality

timing

platform

significantly
simplified

© 2011, chrona.com 63 Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

TDL allows your developers to focus on the functionality

functionality

timing

platform

© 2011, chrona.com 64 Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

TDL allows your developers to focus on the functionality

functionality

timing

platform

3D → 1,5D

© 2011, chrona.com 65 Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

TDL leads to enormous gains in efficiency and quality

eg, FlexRay development reduced by a factor of 20
  1 person year => 2 person weeks

deterministic system:
  simulation and executable on platform always

exhibit equivalent (observable) behavior
  time and value determinism guaranteed

flexibility to change topology, even platform
  automatic code generators take care of the details	

© 2011, chrona.com 66 Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

Thank you for your attention!

