\\\\\ 17,

: + chrona

I\

Timing Definition Language
TDL

Wolfgang Pree

chrona.com

e Timing Definition Language (TDL) in a nut shell
e TDL development process
e TDL tools

Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

© 2011, chrona.com

: + chrona

m\

TDL in a nut shell

© 2011, chrona.com Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan 3

\\\\! 177,

- + chrona

YN

e synchronous languages:
I value determinism
e timed model (LET abstraction)
I time and value determinism
I well suited for distributed platforms

© 2011, chrona.com Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan 4

\\\\! H//

- + chrona

YN

e A high-level textual notation for defining the timing behavior of
a real-time application.

" Y setoftasks L—=()

.. I /
N/ |)
~ & o/
set of set of
Sensors actuators

e TDL covers all aspects that are required to model safety-
critical software as found, for example, in cars, airplanes,
Unmanned Aerial Vehicles (UAVs), automation systems

I seamless integration of time-triggered (synchronous) and
event-triggered (asynchronous) activities

e TDL’s specification is public; could form the basis of an open
standard

© 2011, chrona.com Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan 3

\\\\! H//

- + chrona

YN

Giotto project: 2000 — 2003, University of California, Berkeley

TDL = Giotto concepts
+ Syntax
+ Component Architecture
+ Tool Chain

+ Extensions

© 2011, chrona.com Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan 6

\\\! H//

- + chrona

YN

e Chrona TDL-Compiler
@ Chrona VisualCreator

® Chrona VisualDistributor
e Chrona VisualAnalyzer

® requires Java 1.5 or later

e optional integration with MATLAB/Simulink from
The MathWorks

e Chrona TDL-Machine (alias E-Machine)
I platform-specific, typically in C

© 2011, chrona.com Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan 7

functionality
code

— ||—' TDL:Machine*

— | TDL:Compiler

* Simulink, OSEK, dSpace, ARM, AES, INtime, RTLinux, ...

Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

© 2011, chrona.com

functionality
code

TDL:Compiler

L,
— ||—_,> TDL:Machine*

Platform
plugin®

platform II

specific

* Simulink, OSEK, dSpace, ARM, AES, INtime, RTLinux, ...

© 2011, chrona.com Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan 9

\\\\! 17

- + Chrona

YN

functionality
_________________ code

L,
— ||—’ TDL:Machine

—>

platform II i Platform _ 1 | platform II _ |
specific plugin* ! specific

© 2011, chrona.com Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan 10

A\,

: + chrona

NN

functionality
_________________ code

: : L,
—'5 TDL:Compiler [\ ||—' TDL:Machine

-
\ AST

platform II —i» Platform _ .+, | platform II |
specific i plugin® ! specific

Chrona VisualDistributor

© 2011, chrona.com Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan 11

- + chrona

M\

TDL:Machine

node

Y 4 \

Chrona
VisualAnalyzer

TDL:Machine |/ \ TDL:Machine

node2 node3

© 2011, chrona.com Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan 12

: + chrona

m\

4 mode 1

task 1 [10 ms]

task 2 [20 ms]

— - " /"_"»\"
s 2; /" mode 2 \AZ)
N ok 1 [5 ms] /A3\

™ task 3 [1 ms] |

\ -/

© 2011, chrona.com Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan 13

<+'chrona

m\

4 mode 1

task 1 [10 ms]

task 1 [5 ms]

task 3 [1 ms]

© 2011, chrona.com Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan 14

7////m\\
Logical Execution Time (LET) abstraction
release terminate
Logical Execution Time (LET)
Logical < T T
g task invocation time
start suspend resume stop stop
(ET) (WCET)

ET <=WCET <=LET
results are internally available at ‘stop (ET)’

results are externally visible at ‘terminate’

spare time between ‘stop’ and ‘terminate’

Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

© 2011, chrona.com

15

: + chrona

m\

e observable (logical) timing is identical on all
platforms

e allows for simulation
e allows for composition
e allows for distribution

© 2011, chrona.com Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan 16

\\\\! H//

: + chrona

m\

Mode Start

Logical {

Mode Period

task tinvocation 1 task tinvocation 2

e Every mode has a fixed period.

e A task t has a frequency f within a mode.
O

O

The mode period is filled with f task invocations.
The LET of a task invocation is modePeriod / f.

© 2011, chrona.com Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

ti
>

<+'chrona

m\

f/S-_ i
N .
(SZ /" mode 2 A2)

A task 1 [5 ms]

™ task 3 [1 ms]

N

Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

18

© 2011, chrona.com

ljj/S 1
/

© 2011, chrona.com

[mode 1

/" mode 1

‘ task 2 [10 ms]
task 1 [5 ms] <
task 3 [5 ms]

task 1 [10 ms]

task 2 [20 ms]

4 mode 2

;,\.-—

module Sender

task 1 [5 ms]
-_ mode 3

task 3 [5 ms] ->‘ task 4 [1 ms]

task 3 [1 ms] |

“._ module Receiver

Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

" mode 2 ‘ p ','_'/‘
task 3 [10 ms] / —/

19

/ _—-H’\\ //’" _ - \'\
4 e . /' mode 1)
task 2 [10 ms]
task 1 [10 ms] task 1 [5 ms] <
task 3 [5 ms]
» task 2 [20 ms]
S A o7 ' mode 2 ‘ N
task 3 [1 N/
task 1 [5 ms] sk 3 [10ms] /
task 3 [1 ms] mode 3
task 3 [5 ms] ->‘ task 4 [1 ms]
odule Sender % |
\ module Receiver 4

public

20

Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

© 2011, chrona.com

\! 17,

- + chrona

M\

J mode 2

task 3 [10 ms]

task 1 [5 ms]

| mode 3

ﬁ task 3 [5 ms]

task 3 [1 ms]

“._ module Receiver 4

public

© 2011, chrona.com Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan 21

s+ chrona

//u W

module Sender {

sensor boolean sl uses getSl
" Sender (mode main)

actuator int al uses setAl
@ Inc [oms] @

public task inc {
output int o := 10;
uses incImpl (o)

[period=bms] {

start mode main
task
[freg=1] inc(); // LET = bms / 1 = b5ms
actuator
[freg=1] al := inc.o; // update every 5ms
mode
[freg=1] if exitMain(sl) then freeze;

[period=1000ms] {}

mode freeze

22

Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

© 2011, chrona.com

module Receiver {
import Sender;

task clientTask {
input nt il;

= 10ms

// LET = 10ms / 1

}
mode main [period=10ms] {
[freg=1] clientTask (Sender.inc.o);

task

U e lom)l KRG L entToo 1oms] (e

Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

23

© 2011, chrona.com

5ms

Sender l I inc inc

A
4
—

inc

inc

communication of inc’s
output to clientTask

clientTask

v

Receiver l clientTask

10 ms

Y. ___

A

24

Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

© 2011, chrona.com

\\“ ”//

: + chrona

M\

TDL execution

© 2011, chrona.com Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan 25

: + chrona

m\

e based on a virtual machine, called TDL:Machine

e executes virtual instruction set, called E-code
(embedded code)

e E-code is executed at logical time instants
e synchronized logical time for all components

e E-code generated by TDL compiler from TDL
source

® covers one mode period
e contains one E-code block per logical time instant

© 2011, chrona.com Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan 26

: + chrona

m\

TDL:Machine

single
node

© 2011, chrona.com Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan 27

- + chrona

M\

TDL:Machine

node

TDL:Machine TDL:Machine
node2 node3

© 2011, chrona.com Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan 28

: + chrona

m\

TDL extensions

© 2011, chrona.com Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan 29

U
TDL slot selection
Mode Start] Mode End
Mode Period
. yslot1 slot2 slot3 slot4 slotS slot6 |
Logical
>time
e f=6
30

Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

© 2011, chrona.com

- + chrona
M\
TDL slot selection
Mode Start i Mode End
Mode Period

< tq

) lslot1 slot2 slot3 slot4 slot5 slot6 |}
Logical T T
task invoc. 1 task invoc. 2 time

X X >

o f=6
e task invocation 1 covers slots 1 — 2

e task invocation 2 covers slots4 — 5

31

Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

© 2011, chrona.com

: + chrona

m\

e an arbitrary repetition pattern
e the LET more explicitly

® gaps

e task invocation sequences

e optional task invocations

© 2011, chrona.com Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan 32

Q
- + chrona
//‘ \\\\ ...
Physical layer / E-code blocks
Mode Start . Mode End
Mode Period
_ lslot1 slot2 slot3 slot4 slot5 slot6 }
Logical < T T
L task invoc. 1 task invoc. 2 time
X X >
Physical
~ E-code E-code E-code E-code
block block block block

e E-Code block follows fixed pattern:
1. task terminations
2. actuator updates
3. mode switches
4. task releases

33

© 2011, chrona.com Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

\\\\! H//

- + chrona

YN

e E-code blocks may be identical
e compression feature would be welcome
e new instruction:
REPEAT <targetPC>, <N>
e jumps N times to targetPC, then to PC + 1.
® uses a counter per module
e counter is reset upon mode switch

© 2011, chrona.com Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan 34

Mode Start . Mode End
Mode Period
. lslot1 slot2 slot3 slot4 slot5 slot6 |}
Logical < . .
L task invoc. 1 task invoc. 2 time
S X X >
Physical <
~ E-code E-code E-code E-code
block block block block
Priority levels
e black: highest priority (E-code)
35

Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

© 2011, chrona.com

M\
Adding asynchronous activities
Mode Start . Mode End
Mode Period

- < D

, lslot1 slot2 slot3 slot4 slot5 slot6 }

Logical < T T
task invoc. 2

time
>

L task invoc. 1
BE |]

Physical <
E-code E-code
block block

E-code
block

~ E-code
block

Priority levels
e black: highest priority (E-code)

e red: lower priority (synchronous tasks)

36

Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

© 2011, chrona.com

Mode Start . Mode End
Mode Period
_ lslot1 slot2 slot3 slot4 slot5 slot6 |}
Logical < T T
L task invoc. 1 task invoc. 2 time
m— >
Physical <
~ E-code E-code E-code E-code
block block block block

Priority levels

e black: highest priority (E-code)

e red: lower priority (synchronous tasks)

e Dblue: lowest priority (asynchronous activities)

Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan 37

© 2011, chrona.com

: + chrona

m\

e event-driven background tasks
e may be long running
e not time critical
e could be implemented at platform level, but:
| platform-specific
I unsynchronized data-flow to/from E-machine

e support added toTDL

e Goal: avoid complex synchronization constructs
and the danger of deadlocks and priority inversions

© 2011, chrona.com Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan 38

: + chrona

m\

e task invocation

I similar to synchronous task invocations except
for timing

I input ports are read just before physical
execution

I output ports are visible just after physical
execution

I data flow is synchronized with E-machine
e actuator updates

I similar to synchronous actuator updates except
for timing

I data flow is synchronized with E-machine

© 2011, chrona.com Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan 39

\\\\! H//

-+ Cchrona

e hardware and software interrupts
e periodic asynchronous timers
e port updates

Use a registry for later execution of the async
activities.

Parameter passing occurs at execution time.

Registry functions as a priority queue.

© 2011, chrona.com Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan 40

: + chrona

//u W

hardware interrupts, timer: on interrupt, on timer
highest priority
synchronous activities (E-machine): on port update
high priority
A
\ 4
ports
A
asynchronous activities: on port update
lowest priority enqueue()
+ A 4
registered events
dequeue()

thread critical region

© 2011, chrona.com Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan 41

: + chrona

P
U

e Async activities don‘t preempt anything.
e E-machine may preempt async activities.

e Hardware interrupts (incl. timers) may preempt
everything incl. other hardware interrupts.

e We need a very robust thread safe registry.
e We need a very efficient enqueue operation
I for serving hardware interrupts quickly
I for efficient synchronous port update triggers

® dequeue Is done asynchronously and may be
slower.

© 2011, chrona.com Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan 42

A\

/7,

\\\\”

/

1,

+C

m\

hrona

Transparent distribution

Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

© 2011, chrona.com

43

\\\\\ 17,

: + chrona

I\

Sender|

II-—- FlexRay bus

Receiverl

© 2011, chrona.com Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan 44

\\\\\ 17,

: + chrona

I\

e Firstly, at runtime a set of TDL components
behaves exactly the same, no matter if all
components are executed on a single node or if
they are distributed across multiple nodes.
The logical timing is always preserved, only the
physical timing, which is not observable from the
outside, may be changed.

e Secondly, for the developer of a TDL
component, it does not matter where the
component itself and any imported component
are executed.

© 2011, chrona.com Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan 45

< > ms | | .
' inc

Sender l inc inc inc

A4
—

Receiver l clientTask clientTask
= 10 ms g

46

Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

© 2011, chrona.com

communication communication
window window
| | | |
< sms e B
Sender I inc inc inc linc t
-] i ‘ e T
stop stop
(WCET) (WCET)
Receiver l clientTask clientTask
= 10 ms g

© 2011, chrona.com

Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan 47

communication communication
window window
| | 1 |
5ms : ' ' '.
i > —>| ; —

Sender l | inc inc inc iinc t

[1k
- | ! ! | | ! l local
i buffer
FlexRay :
bus i
: Il local
i buffer

Receiver l clientTask clientTask

v

10 ms

‘A
A4

© 2011, chrona.com Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan 48

: + chrona

m\

File Edit Help
DEBE o ~ %

= Marne “alle
= = Buses Platform C '
= v FlexRay
= [Connected Nodes
BE node
BE node’?
Sender Modules
= [Modes
= =@ nodel
= [Placed Madules
B M
= [Connected Buses
= FlexRay
= = node?
= [Placed Maodules
M2
= [Connected Buses
wr FlexRay
= [Modules
b2
ok

| FlexRav cluster

System

© 2011, chrona.com Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan 49

- + chrona

M\

TDL-based
development process

© 2011, chrona.com Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan 50

Chrona VisualCreator
in Matlab®/Simulink®

Chrona VisualDistributor

platform 2

Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

© 2011, chrona.com

51

: + chrona

m\

TDL tools: demo

© 2011, chrona.com Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan 52

I TDL:VisualCreator (stand-alone or in Matlab®/Simulink®)

I TDL:VisualDistributor (extensible via plugins; currently a plugin for
FlexRay is available as product, together with plug-ins for various
cluster nodes such as the MicroAutoBox, and Renesas—AES)
The TDL:VisualDistributor is available as stand-alone tool or
in Matlab®/Simulink® and provides the following features:

| Communication Schedule Generator

| TDL:CommViewer

| automatic generation of all node-, OS- and cluster-specific files
TDL:Compiler
TDL:Machine for Simulink, mabx, AES, ARM, INtime, OSEK
seamless integration of asynchronous events with TDL

multiple slot selection (decoupling of LET and period; eg, for event
modeling)

I harnessing existing FlexRay communication schedules (via FIBEX) for
their incremental extension

I TDL:VisualAnalyzer (recording and debugging tool)
e work in progress

I ‘intelligent’ FlexRay parameter configuration editor

I TDL:Machine for further platforms (ARM, etc.)

© 2011, chrona.com Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan 53

A\

/7,

\\\\”

1,

+C

m\\

hrona

TDL advantages

Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

© 2011, chrona.com

54

\\\\\ 17,

: + chrona

I\

develop once

Component C

deploy on any
platform

3 dSpace
mabx

' single

FlexRay-based node
communication

© 2011, chrona.com Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan 55

: + chrona

P
m\

© 2011, chrona.com Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan 56

-+ Cchrona

e transparent distribution: developers do not have
to consider the target platform (processor, OS,
communication bus, etc.), which could be a single
node or a distributed system

e time and value determinism: same inputs imply
corresponding same outputs

I significantly improved reliability
I simulation = behavior on execution platform

© 2011, chrona.com Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan o7

funct{onality

Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

© 2011, chrona.com

58

funct{onality

Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

© 2011, chrona.com

59

: + chrona

m\

o

funct{onality

platform

© 2011, chrona.com Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan 60

funct{onality

Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

© 2011, chrona.com

61

funct{onality

Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

© 2011, chrona.com

62

timing

funcfionality

Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

© 2011, chrona.com

63

funcfionality

Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan

© 2011, chrona.com

64

: + chrona

U

eg, FlexRay development reduced by a factor of 20
e 1 person year => 2 person weeks

deterministic system:

e simulation and executable on platform always
exhibit equivalent (observable) behavior

e time and value determinism guaranteed

flexibility to change topology, even platform
e automatic code generators take care of the details

© 2011, chrona.com Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan 65

: + chrona

m\

Thank you for your attention!

© 2011, chrona.com Modeling with TDL, School of Automotive Software Engineering, Nagoya, Japan 66

