2011 3.7 International Advanced School on Automotive Software Engineering

An Approach to Practical Validation
of Control Software Specification

Tomoyuki Kaga Masakazu Adachi
Toyota Motor Co. Toyota Central R&D Labs

Contents of this talk

1. Automotive control software development

2. Specification validation and open issues

3. Concept of the practical approach
4. Tool implementation

5. Application
6. Summary and future direction

Definition of Verification and Validation

Standard definitions

O Verification
 Confirmation by examination and provision of objective evidence that specified requirements and are fulfilled

* Ensuring implementation satisfies the requirements for that step. Can include testing, analysis and review

* You built product right

O Validation

 Confirmation by examination and provision of objective evidence that particular requirements for a specific
intended use are fulfilled

» Ensuring requirements are complete and correct

* You built the right product

Definition in this talk

G

Coding - Impl.

Source code

Software specification (C program)

1. Automotive control software development

2. Specification validation and open issues
3. Concept of the practical approach
4. Tool implementation

5. Application
6. Summary and future direction

Automotive control system and software

Major automotive control systems

Engine control

Air conditioner

Auto cruise control

Transmission control

Steering M. \/chicle stabilit

control w control

Brake control Suspension contr

Hybrid system control

- Interacting with physical environment and various drivers

- Growing contribution of elaborate control systems to deliver
attractive products and to meet regulations

— Coping with growing complexity is a big challenge

Traditional Development Process

Target - Repetitive prototyping loops
- Requires different domain skills : system and software

- Incremental

System
evaluation

Concept
study

Integration

Unit test

SW spec authoring

/
/
/
/

System eng. @ SW eng.

Coding
SW level design

<OEM> <Supplier>

Example : Developing Cold Start Control of Gasoline Engine

Target
Reduce 5% Hydro Carbon emission <« sensor inputs |
Concept T
. AFR sensor
Activate catalyst converter as fast as Throttle l - ;
' Angle v /T \ '
possible g : : | M, HC
: TN /7 SO
Control design AV Catalyst
Optimize reference profiles of throttle, Injection V5= - - Water temp.
fuel injection and spark timing. Spark Timing *
~. Crank Angle
/ —,\\ g
Supposed prototyping loops
Throttle Throttle

Evaluate!

o —

Select related
specification

g

Implement

-

Experimental
engine system

Standard engine system

l if successful,
Standardization ® ®® <= 2ndprototyping loop

System engineering is exploration of feasible solution

Proof-of- _ , Mass
Concept production
e | ‘ Performance Computation load Cost Variation
Xampiles O
: Interference w/ .
perspectives Robustness other control sys. Durability o000
X Catalysts break
4’)(Conflict w/
existing spark control
_ > Only 1%
Exploration /X >< Too expensive
X X
X
Too much computational
resources

- Due to growing complexity, hard to foresee exploration paths without prototyping
- Solution space is getting narrower

- Improvement of prototyping loops is the key

Promotion of Model-Based Development

Model-Based Development
CVaIidation)

Engine Performance (. 1B Control Software
SpeciﬁcatV ComblnatlorD\Speciﬁcation
- = I I

SILS / MILS
Plant MOdeI overenrernnarennraneseanesieiiiiicaereneseniseneennes > Controller MOdeI
e e i
Rapid Prot. ECUL.-~"" "] HILS
Plant eeeeeseee et , Controller
(Engine, Transmission etc.) (Hardware, Software)

\Ccombination)/ V. o0 7

Real World - (Validation)

Model-based Development of Control Software

Target

Concept
study

Control
design

More intuitive
representation to
system engineers

Virtual system
evaluation

Syst

Small virtual loops reduce
big physical loops which
are much expensive

Proto model igand 7
implementa on

\ System perspective
G T TV A i 5.

Software perspective

. Integration

Unit test

Model-based
code verification

Coding Z

Auto code generation

10

Areas where further improvement is needed

- Validation of code specification
- Lack of documents/evidence

Target

Virtual system
evaluation Syst

Concept
study

I
Legacy SW (C,SL)

Ex. \ System perspective
Control “Zintegrate 4 T T T T _
design -——— f “.. Proto model ig and 7 Software perspective
implementa’ on e
/
P 7/

7’ — Integration

Code Verification

4> Unit test

Spec Validation

//
Spec modeling &
,“"SW level design
/

/
/
/

Codi
oding 11

Summary - Automotive control software development

B ==moo | L% = | eRequires repetitive prototyping
-G || R loops for feasible solution

[——

= e .
Ay e F P — eX p I O ra tl O n
, . oad I ' mgdalon it +ihad pedye
i - Sokien 2p2em o puling e
e Improue me vt atpr Ing bocpes b the key .

Promocken of Model-Baued Devekoomem Hodel-paaed Devekeomen of Com ol Sofn o L]
e Promotion of Model-based
= e = g T |

=]

e & o =/ Development to improve
) prototyping loop efficiency

| conenerikdior

e
! (At o BRI e e |

%“‘ = » Specification validation is a big
i challenge

12

1. Automotive control software development
2. Specification validation and open issues
3. Concept of the practical approach

4. Tool implementation

5. Application
6. Summary and future direction

13

Validation of code specification

Though true validity can only
be confirmed in actual uses...

i Environment
Driver behavior

Degradation

Scenario

R

Outputs

Question is simple:

Is the sample set sufficient?

Modified part

14

Making development process formal and accountable

0 Systematic breakdown from system
requirement to software spec

Target

0 Make design artifacts traceable to
higher requirements as evidence

0 Use formal models to apply advanced = g
o _ : = ystem
verification technology : property checking

==== | requirement
- Model checking

- Exhaustive testing

Verification = Soft jam—
=~ — Software ..
E . M N === Requirement ™ *
- Refinement Verification [
e -
Formal Formal ' '
; ft
assumption - - property gp())ecm?ggtion
(set of inputs) (set of outputs)

No need to care about samples! — exhaustiveness assured

15

Formal process and verification - lessons learned

SR and type
SO =

Concrete Pe

[-«Requirement

_ Abstract Design _

-}
=
= = .
‘ = R
o T v = {}
— Y A
o ‘.‘ —
- A s
== s .y - o A
e ; S OK
i e T e L+
1 . - e N
- : 7 - =NG
- N e * .
: 7 & . /4
K h‘. ‘0 o
. ., & .
. ‘e * .
N . e " -
5 .
H g 5 time
: v .
: ot .
. * e, .
: o & "
* -
%
~
%

D

Requisite S

= DeSign iS C0mp|eX enOUgh, Code specification C code
but not too much

- Property must be simply

describable relative to the ' So far applicable area is limited.
Design 16

Rabbit vs. Turtle

Cost |

=

Agile Waterfall
Informal Formal
Small system Large system
Not scalable Scalable
Integral Modular
Unaccountable Accountable
Individual/Skill oriented Team/Rule oriented
Efficient Redundant
M
wdull In Japan:
- Low communication cost
=

- Cultural strength

On the way to finding the best level of formality

<« Complexity

17

A practical problem - latent function

Under a rare condition, hunting behavior had occurred.
The cause was an unrecognized dependence loop.

) g S%j_’ Hunting
Rare condltlon |: " — '
funcO {
4 A |f (RARE){ -
—> == gvar *
—> g
e b=
Legacy code New code

Due to complex dependence among function, especially via shared memory, one
function was overlooked and the condition hadn’t been exercised due to its rareness.

— C code is to blame for ... ?
18

Another practical problem - latent function in a Simulink model

It seems there is no latency in models, but it is not as obvious as we suppose.

Redundant paths in a Simulink model authored by system engineer

Supposed reasons of incomprehensibility:
- Lack of software design skill or less care about model quality
- Essential paths are obscured by software level design details (e.g. type guard)
- Functional grouping is not an easy task

19

Summary - Specification validation and open issue

o"[s the sample set enough?”

e Current usage of formal
verification is limited

e On the way to finding the best level

of formality

e =" __.| *One of validation problem:
EelTE] || IR Latent function

“““““““

OO O O e ey

D 1 Compd . gy s among 'unchion, pecolk o s ad memay, one - Lach o chcagr kil @ e el iy of vl rgr—

rchon v = Ioda . i [
—+Goudels kbEmeRr . T = Al acion by capublon o nol an ooy k.

20

1. Automotive control software development

2. Specification validation and open issues
3. Concept of the practical approach
4. Tool implementation

5. Application
6. Summary and future direction

21

A direction to go - whitebox

Testing with software coverage metrics
Make sure branches and conditions of each switch are exercised

e Hly [
Any . gé %$]>

ﬁ Requires case-by-case inference
of validity at system level

(or use close-loop simulator)

Problems:
. In\EE
- Are functional components really covered? e e | —|_.]J:;
- Bad S/N for functional coverage : ‘_Jw
) @O—
(importance of branches are not even) N e nl

- Hard to infer validity without knowing which There is a chance of div by O error
function was stimulated with 100% branch coverage

Hard to get a sense of functional coverage ’

Functional coverage

Example:
1 input, 1 output

Input

A point exercised by the sample

(trajectory if dynamic)

Coverage is supposed to
be sufficient if each of

equivalence class
of function is exercised in
proper manner respectively.

23

Specification validation by design interest extraction

DeS|gn |ntenS|0n
\\ 1/

[/* Q 6 ~ Design Interest
‘ ; | which has similar abstraction

level to design intension

8

Prototype software _ Exercise
| Identify equivalence
% % equwalence class class
L Behavioral
Simulink E> E> analysis J

Other models

24

Defect category and our target

(b) Absence of function (a) Defect of recognized function

Scenario 1

_ Scenario 2
Designed

by engineer | Scenario 3

Scenario N ..

(c) Defect of latent function (d) Potential absence of function
Class of function
Exist Not exist
©
QL
S - Matter of requirement
(&)
ol 8 (a) Recognized (b) Absent engineering
a| N
c
oo
n| o
é_ (c) Latent (d) Potentially absent
-
D
—)
g

Our target : Are functional components covered? o5

Expected benefits of the approach

- Interactive process with visual support stimulates
engineer’'s awareness

- Mechanized interest extraction serves as the baseline of
coverage standard

- Quality of validation can be improved by tuning extraction
mechanism

=

Next development cycle

26

Summary - Concept of the practical approach

Rty a el et gL
Tl bl L VR) B A kg B DL Rl
a1 : it L/ﬂ-/ "
ety 1 {uen | [
FRFe S) B
[

<= | eQur target is latency problem

uuuuuuuuuuuuuuu

1L 1] Feamii b

o 4 [P e Covering equivalence class of function

e —— e Extract design interest : equivalence

uuuuuu

X class of function and their behaviors

w
[LrrE =

"= & | *Visual support enhances engineers’
== | awareness
27

1. Automotive control software development

2. Specification validation and open issues
3. Concept of the practical approach
4. Tool implementation

5. Application
6. Summary and future direction

28

Outline of current tool implementation

- A kind of dataflow graph (DFG) as one of the abstract functional

model of C code

- Snapshot DFG as one of the equivalence class

- Oneshot testing which stimulate the path corresponding to each DFG

Test generation using
model checker

Test generation
(one shot)

C code
= Slicing
Output
i e
2L IR A

Program analysis
Abstraction

DFG
generati

Input

Statistics

Statistics:
ALL 4

oK 4
NG 0

1323
oK#3 1T

1323

okHITT

Output

Model analysis Snapshot DFGs

& each path condition

Snapshot

2 3 4 dfa srap

s

,
ape [a>0 Fl
decomposition = [[[[= F
<> <> <> <> dfg snap s2
Function = i
R==1 F
= [[[E :
decom
T T B fl
[R=1 m
=1 & & [E] ‘] .
P>0 T
D G G G k=1 m

_ Dead/Conflict paths
Model checking

Conflict #223 1 T.T.3 8.1|.9
Conflict T
analysis Dead #5_1 "?1

Behavioral analysis

29

DFG with edge selection condition

Line
15
16
17
18
19
20
21
22
23
24
25
26

foo() {

t=

0;

if (P1) {
t=ul,

}

if (P2) {

t = bar(ul, u2);

}

if (P3) {
t=t+1;

Eifi’cin

g criteria

Dataflow graph

AT

e

A J v

U | cil tmp4d
N A

Return

Selector

=1
(26) Operator

1

Variable

5C

o (:;hul‘t)U 11:ul BEel. “ Another function bar()
? .

19:s¢) .. i
© | Slicing criteria

Edge selection condition

» Selector 17

219 e20 e21
P1 - [T F
P2 T |[F |F

__v Selector 18

e23d |e24 e23 e26

- - B

B - T F
P3 T F F

F
F
F

30

DFG generation algorithm

L

Code Reaching-definition Backward tracing
Dy = ETOY Yo
- t=gin
t=gin ?{ 2} <= Defined ’ AIIII?{Z}
t=gin [3) @L2 /
2 & /6 !
If (P) { ;O e A
Ps l{z}
,
} Defined 1 2}\»6 | I|l"”)'l ? e}
if (Q) { @L8 2y & {2} s |
t=1t+l ' N\ ,/o ' {2 }/0 ’ '
} t:t+1 e l {2} t:t+1 e”"ﬂﬂﬂkum l {‘}
. { 8 }\»e Definition {8} Wuummm
gOUt = t v { 2, 8 }Wmel’ged v { "y unkmnwum
® LR
v (2.8) v 12,8}
gout=t @ @ gout=t

31

Points unique to embedded control software

ol e
AW NNkRO

15:

[EEY
I

repetitive_task(){
foo()
bar()

}

foo(){
if (P) {
Xx=0

y =X
} ‘

bar(){
X =gin
gout =y
b=

Slicing criteria

[=] foo()

|| [€e—o

Dependenceto | =
previous definition -

Inter-procedural
dependence

—_—
0
-

—
o Il <
>
>
<
I
|
|
|
|
|
|
|
|
|
|
_
>
o

32

Example

int_sc_, gvarl, gvar2, gvar3;

int * const gvar_tbl[3] = {&gvarl, &gvar2, &gvar3};

void timed_task(void){
foo();
bar();
baz();

}

void foo(void){
gvarl =1;
}

void bar(void)

{

inti, P, sum;

sum = 0;
for(i=0;i<3;i++){
sum += *(gvar_tbl[i]);

}

SC =sum;

}

void baz(void){
gvar2 = 2;
}

void occasional_event(void){
gvar3 = 3;
}

N |g——

Il |¢4—o

Yy

-+

Reference to previously
executed value

Order is undecidable

:
G

i

!
\ A

+

A

+

=

33

Model abstraction

Replace typical function patterns to compact representation:

- to omit trivial branches
- to help comprehension

- Type guard
- Absolute

- Rounding

- Max/Min

- Summation
- Cast

if (var < Max) {
var = Max
} else if (var > Min) {

var = Min }

“@r‘

var = HILOGD(var, Max, Min)

DFG

=

DFG

=

lvar

HILOGD

lvar

On Control flow graph

>

\win/

On Dataflow graph

34

Snapshot DFG as a decomposed functional component

Enumerate possible dataflow patterns by taking edge combinations

Condition | e3 | e4
o1 Selector 2 Q F T
A e3
2 C 'O\C N
D »O
Condition | el | e2 Selector 1

P T | F

Snapshot breakdown

35

Meaning of the snapshot breakdown

Original C code

Crvmal,
g,

s 2L g T N A

i
o T g g s o
frongis s)

ot

TP

DFG

lun1q| [fun20| [un3g| |funaq)|

;%X y%iey

\

Snapshot
breakdown

Simplified by slicing out
relevant portion

Slicing criteria

A snapshot

fun3()

v

%
=2

Narrowing focus of interest
with visual comprehension

Doesn’t
matter

Condition“Q - R”
guarantees that the particular
snapshot is functioning.

36

Behavioral analysis for extracted snapshot

Regarding the snapshots as functional
components...

Output

Already implemented

Q -R)
Snap3
PROP i

Model | o YES
i N checker no

Property checking in snapshots

g

PAR
“PAR
QA-R

~QA-R

Coverage monitoring for closed-loop test

Output

Cause analysis
when fail

_ Oneshot test to cover snapshots (ATG1)

4)

Output .
Outline of the
function surface

Grid test in a snapshot (ATG2)

Output Gap detection

L Dynamic test w/ snap traverse (ATG3))

ATGX

37

ATG1

Instrument C code and find inputs which passes the target path.

temp

int gvarl
int gvar2

void main (void){
int temp;

if ((gvarl + gvar2) > 10) {
temp = 1;

Instrumentation

| 4

} else { «—— EX. Target branch
temp = 2; (gvarl + gvar2 <= 10)

}

¥

Model checking

gvarl = 2
gvar2 = 4

int gvarl
int gvar2

void main (void){
int temp;

if ((gvarl + gvar2) > 10) {
temp = 1;

} else { |
flag = 1; flag becomes 1 when

temp = 2; this branch is executed

¥

assert (!(flag == 1));

} An assertion to find counter

example that falsifies
“I(flag == 1)”

Test inputs that stimulates the target branch!!

38

Prototype tool architecture

External Model checking tool (CBMC™)

lllllllllllll?lllllllllllll‘ \

ATG module

[|
[|
[|
[|
: Snapshot breakdown module
-

Made In

> TMC/TCRDL
(Ocaml)

Abstraction module

DFG generation module

- I BB EEEEEEDR

User interface

Control flow analysis module

Data dictionary module y

C parser

CIL: C Intermediate Language *!

*1 “CIL: Intermediate Language and Tools for Analysis and Transformation of C Programs” by George C. Necula,
Scott McPeak, S.P. Rahul and Westley Weimer, in “Proceedings of Conference on Compilier Construction”, 2002.

*2 http://www.cprover.org/cbmc/

39

Example

Input: ginl, gin2
Output: _sc_

: int[ginl, ginZJ _SC_

; void foo (void)

- {

1
2
3
4
5: int P, Q, R, x, y, out ;
6
7
8
9

u P=(ginl == 10);
: Q=(C ginl * gin2 > 0);
= R = (C (ginl + gin2 < 0) & (gin2 > 5));
10: -
11: if (P) {
12: X = 1;
13: } else {
14: X = 2;
15: }
16: it (Q {
17: y = 3;
18: } else {
19: y = 4;
20: }
21: if (R) {
22: out = X;
23: } else {
24: out = vy;
25: }
26 ; T
zr: (s

{

Test generation (ATG1)

== Trace

40

Conflict analysis

Statistics:
ALL 267
OK 21
NG 246

Coverage /.66516653933%

Test generation result:

OK

#1_1

655767 819 843 853 864 : . .
- No test input activating

NG

#2_1

655 674 690 710 753 767 772 819 843 853 864 snap#2 was found
T F FFFTFTF TF N

NG

43 1

655674690 710 713 724 753 767 772 819 843 853 864

NG

#4_1

T FFTFTFTFTFTEF -
655 674 690 710 713 724 753 767 772 819 843 853 864

T FFTFFFTFTFTE

NG

#5_1

655674690 710713 716 753 767 772 819 843 853 . . .
N e e e e Step-by-step identification of root

NG

#6_1

655 674 690 710 713 716 753 767 772819843 853 § conflict by So|ving relaxed constraints
bbb

NG

47 1

655 674 677 690 710 753 767 772 819 843 853 864
T T FFFFTFTFTEF

OK

#8_1

655 674 677 690 710 713 724 753 767 772 819 843 853 864
T TFFTFTFTFTFTEF

OK

#9_1

655 674 677 690 710 713 724 753 767 772 819 843 853 864
T T FF TFFFTFTFTEF

41

Example of the root conflict

Statistics:
ALL 267
OK 21
NG 246

Coverage 7.86516653933%

Test generation result:

655 767 819 843 853 864

OK #1_1 B3876781984388386
Conflict #2_1 974772
Conflict #3_1 574772
Conflict #4_1 °/4772
Confiict #5_1 °7* 772
Confiict #6_1 °7* 712
Conflict #7_1 710772
oK #g 1 B55674677690710 TESE
OK o 1 65567467769071071372

T T FF TFF

#line 674

if (flag ==0){
#line 772

if (flag==1){

Existence of conflict is fine.
Unrecognized conflict is the problem.

Summary - Tool implementation

e Dataflow graph and its snapshots
as one of the model of functional
component

e Auto test generators for behavioral
analysis

e Model checking based one shot

test generator

e Tests pinpointing the particular
snapshot

e Conflict analysis
43

1. Automotive control software development

2. Specification validation and open issues
3. Concept of the practical approach
4. Tool implementation

5. Application
6. Summary and future direction

44

Monitoring snapshot coverage on SILS

e '
e ™ Total:32 snapshots
13 continuous ey
. . inputs ' S
Hunting behavior . |, \
Hunting ﬁ]glijstgrete { One of the ‘* \
E N = [
|] = Tl
27 branches - d 3 [CA /]
\ J
Criteria # of cases =
s
Input space coverage restd * 26 3
Full paths coverage 87000 S
o &
Branch coverage 54 %
Condition coverage 66 S S | ‘ -
ol e R R e e it | Rty e] ————————
DFG snapshots 116 D 8t w2 3 3 e
S T T R TR 15 2 25%% 41 42 43 44 45 a6
DEG bsntaDSEOtS 32 Time [sec] Time [sec] Time [sec]
W/ apstraction

SILS simulation 45

Paths reduction in a production code

Source Code

108 0 | (27,122,688 |

a

DFG snapshot

Irrelevant

Guard

+

+

Guard

Guard

+

Abstraction
(trivial branches)

Guard

+

Irrelevant

v

Snapshots

267

ATG1 (one shot test)

Irrelevant

y=

Guard

T

Guard

Irrelevant

T

Guard

p=

Guard

<I>

Irrelevant

b=

v

Not executable

paths

246

Irrelevant

v

Executable
paths

46

Architecture analysis of large scale legacy code

- Extracted from C code : 52 files

- Controlling granularity by grouping

- Model abstraction of typical function
- 60hrs by manual analysis

= -
S e e | i

e e

...

1. Automotive control software development

2. Specification validation and open issues
3. Concept of the practical approach
4. Tool implementation

5. Application
6. Summary and future direction

48

Future direction

Tool implementation

- DFG extraction from Simulink model
- Integration to SILS/HILS environment

Abstraction level of equivalence class of function

- Extract more essential function for larger problems
- Other function models

Auto test generators

Software modeling

49

Auto test generators

Ve

Output

Grid test in a snapshot (4

Outline of the
function surface

~

L Dynamic test w/ snap traverse (ATG3)

Output

Gap detection

Q
Q
Q

A A
R Vgnapl PAR
%napz -PAR
} %nap3 QA-R
%nap4 - QA-R

Coverage-guided test generator for closed-loop simulator (ATGXx)

Software modeling

Demand for software modeling:
- Embeddable (can generate C code)
- Helps intuitive understanding of equivalence class of function
- Separation of concern
- Implementation details = Essential function
- Unique (no manual synchronization among models)

Centralized mode control Distributed mode control

N o
- b, lel

> ©

SAS" T

°
[]
L o
-
-

|H 1
|
L]

+ Clear mode of operation + Compact description
- Redundant description - Ambiguous mode of operation

Is it possible to describe as a static model??

End.

52

	Contents of this talk
	Definition of Verification and Validation
	Automotive control system and software
	Traditional Development Process
	Example : Developing Cold Start Control of Gasoline Engine
	System engineering is exploration of feasible solution
	Promotion of Model-Based Development
	Model-based Development of Control Software
	Areas where further improvement is needed
	Summary - Automotive control software development
	Validation of code specification
	Making development process formal and accountable
	 Rabbit vs. Turtle
	A practical problem - latent function
	Another practical problem - latent function in a Simulink model
	Summary - Specification validation and open issue
	A direction to go - whitebox
	Functional coverage
	Defect category and our target
	Expected benefits of the approach
	Summary - Concept of the practical approach
	Outline of current tool implementation
	DFG generation algorithm
	Points unique to embedded control software
	Example
	Model abstraction
	Meaning of the snapshot breakdown
	Behavioral analysis for extracted snapshot
	Example
	Summary - Tool implementation
	Architecture analysis of large scale legacy code
	Future direction
	Auto test generators
	Software modeling

