
1

An Approach to Practical Validation An Approach to Practical Validation
of Control Software Specificationof Control Software Specification

2011 3.7 International Advanced School on Automotive Software Engineering

Tomoyuki KagaTomoyuki Kaga
Toyota Motor Co.Toyota Motor Co.

Masakazu AdachiMasakazu Adachi
Toyota Central R&D LabsToyota Central R&D Labs

2

Contents of this talk

1. Automotive control software development
2. Specification validation and open issues
3. Concept of the practical approach
4. Tool implementation
5. Application
6. Summary and future direction

3

Definition of Verification and Validation

• Confirmation by examination and provision of objective evidence that specified requirements and are fulfilled

• Ensuring implementation satisfies the requirements for that step. Can include testing, analysis and review

• You built product right

• Confirmation by examination and provision of objective evidence that particular requirements for a specific
intended use are fulfilled

• Ensuring requirements are complete and correct

• You built the right product

□ Validation

□ Verification

Verification

Validation

Source code
(C program)Software specification

ECU

Definition in this talk

Coding Impl.

Standard definitions

4

1. Automotive control software development
2. Specification validation and open issues
3. Concept of the practical approach
4. Tool implementation
5. Application
6. Summary and future direction

5

Automotive control system and software

Engine control

Transmission control

Vehicle stability
control

Hybrid system control

Suspension control

Auto cruise control

Brake control

Air conditioner

Steering
control

Environment

Safety Comfortable

Major automotive control systems

- Interacting with physical environment and various drivers

- Growing contribution of elaborate control systems to deliver
attractive products and to meet regulations

→ Coping with growing complexity is a big challenge

6

Traditional Development Process

Coding
SW level design

Unit test

Integration

Target

-+

C

-+

C

Concept
study

Control
design

System
evaluationPlanB

PlanA

Con3

Pro1

Pro2

Con2

Con1
PlanB

PlanA

Con3

Pro1

Pro2

Con2

Con1

SW spec authoring

- Requires different domain skills : system and software

System eng.
<OEM>

SW eng.
<Supplier>

- Repetitive prototyping loops

- Incremental

7

Example : Developing Cold Start Control of Gasoline Engine

Target
Reduce 5% Hydro Carbon emission

Concept
Activate catalyst converter as fast as
possible

Control design
Optimize reference profiles of throttle,
fuel injection and spark timing.

New
Controller

Water temp.

Crank Angle

AFR sensor

Sensor inputs

Throttle
Angle

Fuel
Injection

Spark Timing

HC
Catalyst

Select related
specification Modification

Throttle

Fuel inj.

Spark

Standard engine system

Throttle

Fuel inj.

Spark
Coding Implement

Evaluate!

Experimental
engine system

Standardization 2nd prototyping loop
if successful,

Supposed prototyping loops

8

System engineering is exploration of feasible solution

- Due to growing complexity, hard to foresee exploration paths without prototyping
- Solution space is getting narrower

Proof-of-
Concept

Mass
production

→ Improvement of prototyping loops is the key

Cost

Durability

Computation load

Interference w/
other control sys.

Performance Variation
Examples of
perspectives

Feasible

Exploration

Catalysts break

Only 1%

Too much computational
resources

Too expensive

Conflict w/
existing spark control

Robustness

9

Model-Based Development

Real World

Control Software
Specification=

Engine Performance
Specification=

Plant Model Controller Model

Plant
(Engine, Transmission etc.)

Controller
(Hardware, Software)

HILSRapid Prot. ECU

SILS / MILS

Virtual World

Combination

Validation

Combination

Validation

Promotion of Model-Based Development

10

Model-based Development of Control Software

Spec modeling &
SW level design

Coding

Unit test

Integration

System evaluation

Target

-+

C

-+

C

Concept
study

Control
design Proto modeling and

implementation

Virtual system
evaluation

Proto SW model

Legacy SW (C,SL)

Integrate

Proto SW model

Legacy SW (C,SL)

Integrate

PlanB

PlanA

Con3

Pro1

Pro2

Con2

Con1
PlanB

PlanA

Con3

Pro1

Pro2

Con2

Con1

System perspective

Software perspective

Small virtual loops reduce
big physical loops which
are much expensive

Small virtual loops reduce
big physical loops which
are much expensive

Auto code generationAuto code generationModel-based
code verification
Model-based
code verification

More intuitive
representation to
system engineers

More intuitive
representation to
system engineers

11

Spec modeling &
SW level design

Areas where further improvement is needed

Coding

Unit test

Integration

System evaluation

Target

-+

C

-+

C

Concept
study

Control
design Proto modeling and

implementation

Virtual system
evaluation

Proto SW model

Legacy SW (C,SL)

Integrate

Proto SW model

Legacy SW (C,SL)

Integrate

PlanB

PlanA

Con3

Pro1

Pro2

Con2

Con1
PlanB

PlanA

Con3

Pro1

Pro2

Con2

Con1

System perspective

Software perspective

Code VerificationSpec Validation

- Validation of code specification
- Lack of documents/evidence

12

Summary - Automotive control software development

•Requires repetitive prototyping
loops for feasible solution
exploration

•Promotion of Model-based
Development to improve
prototyping loop efficiency

•Specification validation is a big
challenge

13

1. Automotive control software development
2. Specification validation and open issues
3. Concept of the practical approach
4. Tool implementation
5. Application
6. Summary and future direction

14

Question is simple:

Is the sample set sufficient?

Validation of code specification

Environment
Driver behavior
Degradation
…

Scenario

Scene analysisScene analysis

Effect analysisEffect analysis

Though true validity can only
be confirmed in actual uses…

Model Infer

Modified part

Experimental setup

KnowhowKnowhow

Testing methodTesting method
Sample
inputs

Outputs

15

Making development process formal and accountable

□ Systematic breakdown from system
requirement to software spec

□ Use formal models to apply advanced
verification technology : property checking

No need to care about samples! – exhaustiveness assuredNo need to care about samples! – exhaustiveness assured

Formal
property

(set of outputs)

- Model checking
- Exhaustive testing

□ Make design artifacts traceable to
higher requirements as evidence

Software
specification

Target

Software
Requirement

System
requirement

Verification

Verification

Formal
assumption
(set of inputs)

Refinement

16

Formal process and verification - lessons learned

Code specification C code

Abstract DesignRequirement

Requirement
Design

Requirement Design

Concrete Design

Code specification C code

Abstract DesignRequirement

Requirement
Design

Requirement
Design

Requirement DesignRequirement Design

Concrete DesignDifficult to define property for
continuous and/or dynamic behaviors

OK
NG

time

OK
NG

time

Property is too obvious
for small models/codes

Limitation on model scale
and type of arithmetic

So far applicable area is limited.

- Design is complex enough,
but not too much

- Property must be simply
describable relative to the
Design

Requisite

P

D

P

D

17

Rabbit vs. Turtle

Cost

Complexity
?

Agile
Informal

Small system
Not scalable

Integral
Unaccountable

Individual/Skill oriented
Efficient

Waterfall
Formal

Large system
Scalable
Modular

Accountable
Team/Rule oriented

Redundant

On the way to finding the best level of formality

- Low communication cost
- Cultural strength
- …

In Japan:

18

A practical problem - latent function

Under a rare condition, hunting behavior had occurred.
The cause was an unrecognized dependence loop.

Due to complex dependence among function, especially via shared memory, one
function was overlooked and the condition hadn’t been exercised due to its rareness.

→ C code is to blame for … ?

t = func()

gvar =

func() {

}

if (RARE) {

}

return t;

= gvar

Legacy code New code

Hunting

Rare condition

gvar
t

19

Another practical problem - latent function in a Simulink model

Supposed reasons of incomprehensibility:

Redundant paths in a Simulink model authored by system engineer

It seems there is no latency in models, but it is not as obvious as we suppose.

- Lack of software design skill or less care about model quality
- Essential paths are obscured by software level design details (e.g. type guard)
- Functional grouping is not an easy task

20

Summary - Specification validation and open issue

•“Is the sample set enough?”

•On the way to finding the best level
of formality

•Current usage of formal
verification is limited

•One of validation problem:
Latent function

21

1. Automotive control software development
2. Specification validation and open issues
3. Concept of the practical approach
4. Tool implementation
5. Application
6. Summary and future direction

22

A direction to go - whitebox

Requires case-by-case inference
of validity at system level

Testing with software coverage metrics

Any

There is a chance of div by 0 error
with 100% branch coverage

- Are functional components really covered?
Problems:

Make sure branches and conditions of each switch are exercised

Hard to get a sense of functional coverage

(or use close-loop simulator)

- Hard to infer validity without knowing which
function was stimulated

- Bad S/N for functional coverage
(importance of branches are not even)

23

Output

Input OutputExample:
1 input, 1 output

Input

Functional coverage

A point exercised by the sample
(trajectory if dynamic)

Coverage is supposed to
be sufficient if each of
equivalence class
of function is exercised in
proper manner respectively.Input domain

24

Specification validation by design interest extraction

C Simulink

Prototype software

Design intension

Behavioral
analysis

Exercise
equivalence
class

Model
analysis

Identify
equivalence class

which has similar abstraction
level to design intension

Design Interest

Other models

25Our target : Are functional components covered?

Matter of requirement
engineering

Defect category and our target

Scenario 1 Behavior 1func A

Scenario 2 func B
(defective) Defective

(a) Defect of recognized function

Scenario 3 Defective

(b) Absence of function

func X

(c) Defect of latent function (d) Potential absence of function
S

pe
ci

fie
d

S
ce

na
rio

U
ns

pe
ci

fie
d

Exist Not exist
Class of function

(a) Recognized (b) Absent

(d) Potentially absent(c) Latent

Behavior Nfunc NScenario N

Designed
by engineer

26

Expected benefits of the approach

- Interactive process with visual support stimulates
engineer’s awareness

- Mechanized interest extraction serves as the baseline of
coverage standard

- Quality of validation can be improved by tuning extraction
mechanism

-+

C

-+

C

Proto SW model

Legacy SW (C,SL)

Integrate

Proto SW model

Legacy SW (C,SL)

Integrate

PlanB

PlanA

Con3

Pro1

Pro2

Con2

Con1
PlanB

PlanA

Con3

Pro1

Pro2

Con2

Con1

-+

C

-+

C

Proto SW model

Legacy SW (C,SL)

Integrate

Proto SW model

Legacy SW (C,SL)

Integrate

PlanB

PlanA

Con3

Pro1

Pro2

Con2

Con1
PlanB

PlanA

Con3

Pro1

Pro2

Con2

Con1

Interest
extraction Interest

extraction

-+

C

-+

C

Proto SW model

Legacy SW (C,SL)

Integrate

Proto SW model

Legacy SW (C,SL)

Integrate

PlanB

PlanA

Con3

Pro1

Pro2

Con2

Con1
PlanB

PlanA

Con3

Pro1

Pro2

Con2

Con1

-+

C

-+

C

Proto SW model

Legacy SW (C,SL)

Integrate

Proto SW model

Legacy SW (C,SL)

Integrate

PlanB

PlanA

Con3

Pro1

Pro2

Con2

Con1
PlanB

PlanA

Con3

Pro1

Pro2

Con2

Con1

Next development cycle

Im
prove

27

Summary - Concept of the practical approach

•Our target is latency problem

•Covering equivalence class of function

•Extract design interest : equivalence
class of function and their behaviors

•Visual support enhances engineers’
awareness

28

1. Automotive control software development
2. Specification validation and open issues
3. Concept of the practical approach
4. Tool implementation
5. Application
6. Summary and future direction

29

Outline of current tool implementation

C code

Model analysis

DFG
generation

DFG
Program analysis
Abstraction
Slicing

Function
decomposition

Snapshot DFGs
& each path condition

Snapshot
decomposition

Behavioral analysis

Test generation
(one shot)

Test generation using
model checker

Statistics

Conflict
analysis

Model checking
Dead/Conflict paths

Output

Input

Output

Input

- Oneshot testing which stimulate the path corresponding to each DFG

- Snapshot DFG as one of the equivalence class

- A kind of dataflow graph (DFG) as one of the abstract functional
model of C code

30

Edge selection condition

Dataflow graph

Selector

Slicing criteria

Operator

Variable

Edge

Input (constant)Input (variable)

DFG with edge selection condition

foo() {
t = 0;
if (P1) {

t = u1;
}
if (P2) {

t = bar(u1, u2);
}
if (P3) {

t = t + 1;
}
sc = t;

}

15
16
17
18
19
20
21
22
23
24
25
26

Line

Slicing criteria

Selector 17

Selector 18

Another function bar()

31

DFG generation algorithm

Reaching-definition Backward tracing DFG

…
t = gin
...
If (P) {
…

}
if (Q) {
t = t+1

}
…
gout = t

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:

Code

Definition
merged

t = gin

t=t+1

gout = t

{ 2 }

{ 2 }
{ 2 }

{ 2 }

{ 2 }

{ 2 }{ 2 }

{ 8 }
{ 2, 8 }

{ 2, 8 }

{ }
Empty

Defined
@L8

Defined
@L2

{ 2 }

2

1

3

4

5

6

7

8

9

10

11

2

1

3

4

5

6

7

8

9

10

11

t = gin

t=t+1

gout = t

{ 2 }

{ 2 }
{ 2 }

{ 2 }

{ 2 }

{ 2 }

{ 2 }

{ 8 }
{ 2, 8 }

{ 2, 8 }

{ }

{ 2 }

32

Points unique to embedded control software

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:

repetitive_task(){
foo()
bar()

}

foo(){
if (P) {
x = 0

}
y = x

}

bar(){
x = gin
gout = y

}
Slicing criteria

Inter-procedural
dependence

Dependence to
previous definition

33

Example

int _sc_, gvar1, gvar2, gvar3;
int * const gvar_tbl[3] = {&gvar1, &gvar2, &gvar3};

void timed_task(void){
foo();
bar();
baz();

}

void foo(void){
gvar1 = 1;

}

void bar(void)
{

int i, P, sum;

sum = 0;
for (i = 0 ; i < 3 ; i++) {

sum += *(gvar_tbl[i]);
}

sc = sum;
}

void baz(void){
gvar2 = 2;

}

void occasional_event(void){
gvar3 = 3;

}

Reference to previously
executed value

Order is undecidable

34

Model abstraction

if (var < Max) {

var = Max

} else if (var > Min) {

var = Min }

v ar = HILOGD(var, Max, Min)

var

var
Max Min

var

HILOGD

var

DFG

DFG

Abstraction

if (var < Max) {

var = Max

} else if (var > Min) {

var = Min }

v ar = HILOGD(var, Max, Min)

var

var
Max Min

var

var
Max Min

var

HILOGDHILOGD

var

DFG DFG

DFG DFG

Abstraction

Replace typical function patterns to compact representation:
- to omit trivial branches
- to help comprehension

- Type guard
- Absolute
- Rounding
- Max/Min
- Summation
- Cast
- … On Control flow graph

On Dataflow graph

35

Snapshot DFG as a decomposed functional component

A

B
D

Out

Selector 1

Selector 2e1

e2
e3

e4

e2e1Condition

FTP

e4e3Condition

TFQ

A C Out

B C Out

D Out

e1 e3

e2 e3

e4

TP

FQ

TQ

Snapshot breakdown

C

FP

FQ

Snapshot 1：

Snapshot 2：

Snapshot 3：

Enumerate possible dataflow patterns by taking edge combinations

36

Meaning of the snapshot breakdown

if (P) {
x = fun1();

} else {
x = fun2();

}

if (Q) {
y = fun3();

} else {
y = fun4();

}

if (R) {
out = x;

} else {
out = y;

}

sc = out;

Slicing criteria

out = x

R

out = y
T F

x = fun1()

P

x = fun2()

T FDoesn’t
matter

y = fun3()

Q

y = fun4()

T F

Narrowing focus of interest
with visual comprehension

Original C code

A snapshot

Snapshot
breakdown

DFG

xx

x y

yy

out

Simplified by slicing out
relevant portion

Simplified by slicing out
relevant portion

Condition “Q ∧¬ R”
guarantees that the particular
snapshot is functioning.

Condition “Q ∧¬ R”
guarantees that the particular
snapshot is functioning.

37

Already implemented

Behavioral analysis for extracted snapshot

¬P ۸RSnap2

Q ۸¬RSnap3

P ۸RSnap1

¬ Q ۸¬RSnap4

¬P ۸RSnap2

Q ۸¬RSnap3

P ۸RSnap1

¬ Q ۸¬RSnap4

Coverage monitoring for closed-loop test

Regarding the snapshots as functional
components...

¬P ۸RSnap2

Q ۸¬RSnap3

P ۸RSnap1

¬ Q ۸¬RSnap4

¬P ۸RSnap2

Q ۸¬RSnap3

P ۸RSnap1

¬ Q ۸¬RSnap4

Output

Model
checker

(Q ∧¬ R)
∧ PROP yes

no

Snap3

Code

Property checking in snapshots

Oneshot test to cover snapshots (ATG1)

Output

Cause analysis
when fail

Grid test in a snapshot (ATG2)

Output
Outline of the
function surface

Dynamic test w/ snap traverse (ATG3)

Output Gap detection

・
・・

ATGX

38

ATG1

int gvar1
int gvar2

void main (void){
int temp;

if ((gvar1 + gvar2) > 10) {
temp = 1;

} else {
flag = 1;
temp = 2;

}

assert (!(flag == 1));

}

Instrumentation

An assertion to find counter
example that falsifies
“!(flag == 1)”

flag becomes 1 when
this branch is executed

Instrument C code and find inputs which passes the target path.

gvar1 = 2
gvar2 = 4

Model checking

||
Test inputs that stimulates the target branch!!

int gvar1
int gvar2

void main (void){
int temp;

if ((gvar1 + gvar2) > 10) {
temp = 1;

} else {
temp = 2;

}

}

Ex. Target branch
(gvar1 + gvar2 <= 10)

39

Control flow analysis module

C parser
（CIL: C Intermediate Language *1）

DFG generation module

ATG module

U
se

r i
nt

er
fa

ce

Data dictionary module

External Model checking tool (CBMC*2)

Prototype tool architecture

Abstraction module

Snapshot breakdown module

(Ocaml)

Made in
TMC/TCRDL

*1 “CIL: Intermediate Language and Tools for Analysis and Transformation of C Programs” by George C. Necula,
Scott McPeak, S.P. Rahul and Westley Weimer, in “Proceedings of Conference on Compilier Construction”, 2002.

*2 http://www.cprover.org/cbmc/

40

Example

1: int gin1, gin2, _sc_ ;
2:
3: void foo (void)
4: {
5: int P, Q, R, x, y, out ;
6:
7: P = (gin1 == 10);
8: Q = (gin1 * gin2 > 0);
9: R = ((gin1 + gin2 < 0) & (gin2 > 5));
10:
11: if (P) {
12: x = 1;
13: } else {
14: x = 2;
15: }
16: if (Q) {
17: y = 3;
18: } else {
19: y = 4;
20: }
21: if (R) {
22: out = x;
23: } else {
24: out = y;
25: }
26:
27: _sc_ = out;
28: }

DFG generation

DFG generation

Selector condition table

Functional decomposition

Snapshot breakdown

Test generation (ATG1)

Snapshot statistics

Trace of snap #1

Conflict analysis

Input: gin1, gin2
Output: _sc_

41

Conflict analysis

Step-by-step identification of root
conflict by solving relaxed constraints

Step-by-step identification of root
conflict by solving relaxed constraints

No test input activating
snap#2 was found

42

Example of the root conflict

#line 674
if (flag == 0) {

#line 772
if (flag == 1) {

#line 674
if (flag == 0) {

#line 772
if (flag == 1) {

Existence of conflict is fine.
Unrecognized conflict is the problem.

43

Summary - Tool implementation

•Dataflow graph and its snapshots
as one of the model of functional
component

•Auto test generators for behavioral
analysis

•Model checking based one shot
test generator

•Tests pinpointing the particular
snapshot

•Conflict analysis

44

1. Automotive control software development
2. Specification validation and open issues
3. Concept of the practical approach
4. Tool implementation
5. Application
6. Summary and future direction

45

Monitoring snapshot coverage on SILS

res13 * 26Input space coverage

66Condition coverage

54Branch coverage

32
DFG snapshots
w/ abstraction

116DFG snapshots

87000Full paths coverage

of casesCriteria

Hunting

Rare condition

gvar
t

Hunting

Rare condition

gvar
t

SILS simulation

30

40

50

60

37

38

4 4.1 4.2 4.3 4.4 4.5 4.681

82

83

84

Time [sec]

S
el

ec
to

r
32

S
el

ec
to

r
65

0

10

20

30

37

38

1 1.5 2 2.5
81

82

83

84

Time [sec]

0

20

40

60

0.5 0.6 0.7 0.8 0.9 1
81
82
83
84

37

38

Time [sec]

(a) (b) (c)
O

ut
pu

t

Hunting behavior
13 continuous
inputs

6 discrete
inputs

27 branches

One of the
snap

Total 32 snapshots

46
≒108～9≒108～9 27,122,688 27,122,688

Source Code Abstraction
(trivial branches)

Guard

Guard

Paths reduction in a production code

Snapshots

267267

Guard

Guard

Irrelevant

Irrelevant

DFG snapshot

Not executable
paths

Executable
paths

2121

Guard

Guard

Irrelevant

Irrelevant

246246

Guard

Guard

Irrelevant

Irrelevant

ATG1 (one shot test)CFG

47

Architecture analysis of large scale legacy code

- Extracted from C code : 52 files
- Controlling granularity by grouping
- Model abstraction of typical function
- 60hrs by manual analysis

48

1. Automotive control software development
2. Specification validation and open issues
3. Concept of the practical approach
4. Tool implementation
5. Application
6. Summary and future direction

49

Future direction

◆ Abstraction level of equivalence class of function
- Extract more essential function for larger problems
- Other function models

◆ Auto test generators

◆ Tool implementation

◆ Software modeling

- DFG extraction from Simulink model
- Integration to SILS/HILS environment

50

Auto test generators

Grid test in a snapshot (ATG2)

Output
Outline of the
function surface

Dynamic test w/ snap traverse (ATG3)

Output Gap detection

Coverage-guided test generator for closed-loop simulator (ATGx)

¬P ۸RSnap2

Q ۸¬RSnap3

P ۸RSnap1

¬ Q ۸¬RSnap4

¬P ۸RSnap2

Q ۸¬RSnap3

P ۸RSnap1

¬ Q ۸¬RSnap4

51

Software modeling

m1

m2

mk

+ Clear mode of operation
- Redundant description

+ Compact description
- Ambiguous mode of operation

b1

b2 b3

bn

bi

bj

Centralized mode control Distributed mode control

Demand for software modeling:
- Embeddable (can generate C code)
- Helps intuitive understanding of equivalence class of function
- Separation of concern

- Implementation details ⇔ Essential function
- Unique (no manual synchronization among models)

Is it possible to describe as a static model??

52

End.

	Contents of this talk
	Definition of Verification and Validation
	Automotive control system and software
	Traditional Development Process
	Example : Developing Cold Start Control of Gasoline Engine
	System engineering is exploration of feasible solution
	Promotion of Model-Based Development
	Model-based Development of Control Software
	Areas where further improvement is needed
	Summary - Automotive control software development
	Validation of code specification
	Making development process formal and accountable
	 Rabbit vs. Turtle
	A practical problem - latent function
	Another practical problem - latent function in a Simulink model
	Summary - Specification validation and open issue
	A direction to go - whitebox
	Functional coverage
	Defect category and our target
	Expected benefits of the approach
	Summary - Concept of the practical approach
	Outline of current tool implementation
	DFG generation algorithm
	Points unique to embedded control software
	Example
	Model abstraction
	Meaning of the snapshot breakdown
	Behavioral analysis for extracted snapshot
	Example
	Summary - Tool implementation
	Architecture analysis of large scale legacy code
	Future direction
	Auto test generators
	Software modeling

