SPLC 2013 Panel Scale changes everything, but . . . Why does it change? How does it change?

From SPL to Dynamic Ecosystems

Mikio Aoyama NISE(network, information and software engineering lab.) Dep. of Software Engineering Nanzan University mikio.aoyama@nifty.com http://www.ni.e.org/ August 29, 201 Tokyo, Japan

Evolution of SPL on the Connected World From SPL to Dynamic Ecosystems

Conventional SPL focuses on functionality of a set of products

Rich functionality with lower cost and shorter time-to-market

Real systems are much more diverse and multi-objective

2

Automotive Software: Why? Many Product(-Line)s in an Automobile

Increasing no. of controllers/product-lines and size of software

- No. of controllers (ECU: Electronic Control Unit): 50 ~ 100+
- Increasing collaboration/interaction among product(-line)s

Engine and Power Train ACC (Adaptive Cruise Control) **ECT (Electronic Controlled Transmission) EFI (Électronic Fuel Injection)** HVC (Hybrid Vehicle Control)

Chassis and Safety AFS (Adaptive Front-lighting System) ACS (Active Control Suspension) ABS (Antilock Brake System) ESC (Electronic Stability Control) PCS (Pre-Crash Safety) TRC (TRaction Control) VDM (Vehicle Dynamics Management)

Comfort and Pleasure Back Guide Monitor Climate Control: Air Conditioner Door Lock Control, Immobilizer Power Seat, Power Window Remote Engine Start (Keyless)

Communication **DCM (Data Communication Module)** In-Vehicle Network: CAN, LIN, MOST, FlexRay, TTEthernet, Bluetooth

Human Interface and Support **Car Navigation System** LCD Instrument Panel, Touch Panel, HUD (Head Up Display), Speech **Recognition System, Haptic Interface**

Ref.: M. Aoyama, Computing for the Next-Generation Automobile, ³ IEEE Computer, Vol. 45, No. 6, Jun. 2012, pp. 32-37. All Rights Reserved, Copyright Mikio Aoyama, 2013

Automotive Software: How? Collaboration of Distributed Products over Physical Body

Scope of current product-line: component on standard platform
engine control, brake control (ABS/ESC)

Value added by system-wide collaboration of multiple SPLs

- VDM (Vehicle Dynamic Management system) for stability
- Collaboration of engine, transmission, brake, steering,

suspension Steering Control Navigation System

Engine Control

VDM

4

Transmission Control

Suspension Control

Brake Control(ABS, ESC)

- HEV (Hybrid Electric Vehicle) for economy and performance
- Collaboration of engine, motor/generator, brake, battery, transmission

Automotive Software: How? Design of Collaboration/Interaction among Products

 Interaction is a key design principle of any ecosystem
 Clustering interactions in VDM with an extended DSM (Design Structure Matrix)

Ref.: M. Aoyama and H. Tanabe, A Design Methodology for Real-Time Distributed Software Architecture Based on the Behavioral Properties and Its Application to Advanced Automotive Software, Proc. of APSEC 2011, pp. 211-217.

All Rights Reserved, Copyright Mikio Aoyama, 2013

Automotive Software: IT Network, Transportation Network, and Social Network

- Optimization as an eco-system: IT network, transportation network and social network (and, power grid)
- IT network over the transportation network

SSC (Software Supply Chain): Why? SSC as Software Ecosystem

SSC: Collaborative development with multiple organizations
 SSC has been a common practice in Japan

- Influenced by successful collaborative SCM in automotive
- Inlike hardware, SSC is dynamic (project basis) and virtual

SSC (Software Supply Chain): How? Complex Supply Chain

Fusion of multiple supply chains of Dev/Ops(provisioning)

- Professional service supply chain: development
- Computing service supply Chain: provisioning/operation

SSC (Software Supply Chain): How? A New Architectural Style for SSC

An architectural style evolved from dynamic re-configuration/ self-adaptive

- Two-layer architecture
 - Meta-level: supply chain management
 - Base-level: service provisioning

SSC (Software Supply Chain): How? PROMIS for Collaborative Management of SSC

PROMIS(PROject Management Information exchange Services)

- PROMIS Consortium: Nanzan University, IBM, Fujitsu, NEC, NTT DATA, Hitachi, NRI(Nomura Research Institute)
- PROMIS provides an open platform on top of OSLC (Open Services for Lifecycle Collaboration) core

Open specifications and open source platform

All Rights Reserved, Copyright Mikio Aoyama, 2013

SSC (Software Supply Chain): How? PROMIS (Project Management Information exchange Services) for Managing SSC

- PROMIS is a collaboration of
- Architecture for collaboration management of SSC based on
 - Common Resource Model for sharing management data
 - Open platform base on open standards: OSLC, Linked Data and REST

Ref.: M. Aoyama, et al., PROMIS: A Next-Generation Project Management Data Exchange 12 Architecture, Proc. of ProMAC 2012, Oct. 2012, pp. 493-500.

All Rights Reserved, Copyright Mikio Aoyama, 2013

Tomorrow of SPL From Product to Dynamic Ecosystems

- Ecosystem is a natural evolution of SPL on the connected world
- The second secon
 - Feature interaction and design for collaboration
 - Change propagation
 - Self-organization and self-adaptation
 - Co-evolution and coadaptation

a Set of

Products

Complex system
lifecycle
Features for

次世代プロジェクト管理データ交換アーキテクチャ協議会

PROMIS Architecture

PROject Management Information exchange Services Architecture

Thank You!

Mikio Aoyama, Chair **PROMIS Consortium**

Nanzan University, IBM Japan, Ltd. **Fujitsu Limited, NEC Corporation, NTT Data Corporation** Hitachi, Ltd., and Nomura Research Institute, Ltd

All Rights Reserved, Copyright Mikio Aoyama, 2013